. Medical and Hospital News .




INTERN DAILY
Detection, analysis of 'cell dust' may allow diagnosis, monitoring of brain cancer
by Staff Writers
Boston MA (SPX) Nov 16, 2012


Microvesicles are abundant in the circulation and, unlike CTCs, are small enough to cross the blood/brain barrier, which means that they could be used to detect and monitor brain cancers

A novel miniature diagnostic platform using nuclear magnetic resonance (NMR) technology is capable of detecting minuscule cell particles known as microvesicles in a drop of blood. Microvesicles shed by cancer cells are even more numerous than those released by normal cells, so detecting them could prove a simple means for diagnosing cancer.

In a study published in Nature Medicine, investigators at the Massachusetts General Hospital (MGH) Center for Systems Biology (CSB) demonstrate that microvesicles shed by brain cancer cells can be reliably detected in human blood through a combination of nanotechnology and their new NMR-based device.

"About 30 or 40 years ago, people noticed something in the bloodstream that they initially thought was some kind of debris or 'cell dust',"explains Hakho Lee, PhD, of the CSB, and co-senior author of the study with Ralph Weissleder, MD, PhD, director of the CSB. "But it has recently become apparent that these vesicles shed by cells actually harbor the same biomarkers as their parent cells."

Circulating tumor cells (CTCs) have been regarded as a potential key to improved cancer diagnosis, but Lee explains, "The problem with CTCs is that they are extremely rare, so finding them in the blood is like trying to find a needle in a haystack."

Microvesicles on the other hand are abundant in the circulation and, unlike CTCs, are small enough to cross the blood/brain barrier, which means that they could be used to detect and monitor brain cancers, he adds.

Glioblastoma multiforme (GBM) is the most common and most aggressive brain cancer in humans. By the time it is diagnosed, patients typically have less than 15 months to live. One of the biggest challenges with this condition is accurate disease monitoring to establish whether patients are responding to treatment.

Currently, the only way to diagnose and monitor GBM is with biopsies and imaging tests, making long-term treatment monitoring difficult, invasive and impractical. To address this need, the CSB team sought to develop a simple blood test that could be used to easily monitor disease progression.

"The issue with microvesicles, however, is that they are very small, so there are not many technologies out there that can detect and molecularly profile them," explains Lee.

"That is where our new technology comes in." By using nanotechnology to magnetically label microvesicles, and by adapting and improving equipment they developed last year to detect cancer cells with a miniature, hand-held NMR, the MGH researchers were able to reliably detect the tumor microvesicles in blood samples from mice bearing human GBM tumors and eventually in samples from human GBM patients.

Compared with other gold-standard techniques, this new technology demonstrated excellent detection accuracy. However, unlike other methods - which can be time-consuming and require much greater sample volumes as well as expertise to perform - NMR detection is quick and simple, potentially providing almost instant results from a small blood sample right in a doctor's office, the authors note.

The MGH CSB team is currently extending this platform to other types of cancer and to other diseases such as bacterial infection. A number of clinical studies are currently ongoing, and others are in the planning stages, with the goal of eventually commercializing the technology.

"These microvesicles were found to be remarkably reliable biomarkers," confirms Weissleder.

"They are very stable and abundant and appear to be extremely sensitive to treatment effects. In both animals and human patients, we were able to monitor how the number of cancer-related microvesicles in the bloodstream changed with treatment," explains Weissleder.

"Even before an appreciable change in tumor size could be seen with imaging, we saw fewer microvesicles. It's like they are a harbinger of treatment response." Weissleder is a professor of Radiology and Lee an assistant professor at Harvard Medical School.

Huilin Shao of the MGH Center for Systems Biology is lead author of the Nature Medicine report. Additional co-authors are Jaehoon Chung, PhD, MGH CSB; Leonora Balaj and Xandra Breakefield, PhD, MGH Neurology; Fred Hochberg, MD, MGH Cancer Center; Alain Charest, PhD, Tufts University School of Medicine; Darell Bigner, MD, PhD, Duke University Medical Center; and Bob S. Carter, MD, PhD, University of California, San Diego. The study was supported by grants from the National Institutes of Health.

.


Related Links
Massachusetts General Hospital
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





INTERN DAILY
New micropumps for hand-held medical labs produce pressures 500 times higher than car tire
Washington DC (SPX) Nov 16, 2012
In an advance toward analyzing blood and urine instantly at a patient's bedside instead of waiting for results from a central laboratory, scientists are reporting development of a new micropump capable of producing pressures almost 500 times higher than the pressure in a car tire. Described in ACS' journal Analytical Chemistry, the pumps are for futuristic "labs-on-a-chip," which reduce entire l ... read more


INTERN DAILY
Australia deports more Sri Lankans

72 tonnes of food aid for quake-struck Guatemala: WFP

High radiation found in Fukushima's fish

New York authorities probe Sandy price gouging

INTERN DAILY
Quattro Group Gains Visibility And Control With Ctrack

Saudi Arabia to Launch Two Satellites

Nokia buys 3D mapping firm in location services push

Gazprom to Launch Two Satellites by Yearend

INTERN DAILY
'Tunable' light bulb could improve sleep

Photos show Einstein's brain 'different'

Virtual Reality Could Help People Lose Weight and Fight Prejudice

Research suggests that humans are slowly but surely losing intellectual and emotional abilities

INTERN DAILY
Exhaustive family tree for birds shows recent, rapid diversification

New study to examine ecological tipping points in hopes of preventing them

Climate change threatens giant pandas' bamboo buffet - and survival

Brazil eyes cloning to bolster endangered species

INTERN DAILY
Air transmission of Ebola virus a concern

Italy lifts ban on Novartis flu vaccines

Switzerland lifts ban on Novartis flu vaccine

New opportunity for rapid treatment of malaria

INTERN DAILY
China's Xi hammers home graft warning: media

Chinese street children found dead in dumpster

New Tibetan self-immolation in China: rights groups

China's Xi says party faces problems including graft

INTERN DAILY
Piracy will swell again if seas not policed: S.African Navy

Mekong River attackers get death sentences

West African pirates target oil tankers

Pirate killed off Somali coast: NATO

INTERN DAILY
Economic uncertainty afflicts U.S.

Walker's World: Japan's looming crisis

Texas Instruments to cut 1,700 jobs in reorganization

Lagarde wants 'real fix, not quick fix' on Greek debt




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement