Subscribe free to our newsletters via your
  Medical and Hospital News  


Subscribe free to our newsletters via your




















INTERN DAILY
Stanford scientists develop new technique for imaging cells and tissues under the skin
by Staff Writers
Stanford CA (SPX) Mar 21, 2016


Gold nanorods within the blood vessels of a mouse ear appear green. The lower right shows vessels within a tumor that lies under the skin. Image courtesy de la Zerda lab. For a larger version of this image please go here.

Scientists have many tools at their disposal for looking at preserved tissue under a microscope in incredible detail, or peering into the living body at lower resolution. What they haven't had is a way to do both: create a three-dimensional real-time image of individual cells or even molecules in a living animal.

Now, Stanford scientists have provided the first glimpse under the skin of a living animal, showing intricate real-time details in three dimensions of the lymph and blood vessels.

The technique, called MOZART (for MOlecular imaging and characteriZation of tissue noninvasively At cellular ResoluTion), could one day allow scientists to detect tumors in the skin, colon or esophagus, or even to see the abnormal blood vessels that appear in the earliest stages of macular degeneration - a leading cause of blindness.

"We've been trying to look into the living body and see information at the level of the single cell," said Adam de la Zerda, an assistant professor of structural biology at Stanford and senior author on the paper. "Until now there has been no way do that."

De la Zerda, who is also a member of Stanford Bio-X, said the technique could allow doctors to monitor how an otherwise invisible tumor under the skin is responding to treatment, or to understand how individual cells break free from a tumor and travel to distant sites.

Going for gold
A technique exists for peeking into a live tissue several millimeters under the skin, revealing a landscape of cells, tissues and vessels. But that technique, called optical coherence tomography, or OCT, isn't sensitive or specific enough to see the individual cells or the molecules that the cells are producing, which is what interests de la Zerda.

A major issue has been finding a way of differentiating between cells or tissues; for example, picking out the cancerous cells beginning to multiply within an overall healthy tissue. In other forms of microscopy, scientists have created tags that latch onto molecules or structures of interest to illuminate those structures and provide a detailed view of where they are in the cell or body.

No such beacons existed for OCT, though de la Zerda knew that tiny particles called gold nanorods had some of the properties he was looking for. The problem was that the commercially available nanorods didn't produce nearly enough signal to be detected in a tissue.

What the team needed were nanorods, but big ones. Nanorods are analogous to organ pipes, said graduate student Elliott SoRelle, because longer pipes vibrate at lower frequencies, creating a deep, low sound. Likewise, longer nanorods vibrate at lower frequencies, or wavelengths, of light. Those vibrations scatter the light, which the microscope detects.

If all the other tissues are vibrating in a white noise of higher frequencies, longer nanorods would stand out like low organ notes amidst a room of babble.

SoRelle's challenge was to manufacture longer nanorods that were nontoxic, stable and very bright, which turned out to be a lot to ask. "My background was biochemistry, and this turned out to be a problem of materials science and surface chemistry," said SoRelle, who was co-first author on the paper. He can now make nontoxic nanorods in various sizes that all vibrate at unique and identifiable frequencies.

Eliminating noise
The next challenge was filtering out the nanorods' frequency from the surrounding tissue.

To do that, electrical engineering graduate student and Bowes Bio-X Fellow Orly Liba developed computer algorithms that could separate out the frequencies of light scattered by nanorods of various lengths and differentiate those from surrounding tissue.

With SoRelle's large nanorods and Liba's sensitive algorithms, de la Zerda and his team had solved the initial problem of detecting specific structures in three-dimensional images of living tissues. The resulting three-dimensional, high-resolution images were so big - on the order of gigapixels - that the team needed to develop additional algorithms for analyzing and storing such large images.

The team tested their technology in the ear of a living mouse, where they were able to watch as the nanorods were taken up into the lymph system and transported through a network of valves. They were able to distinguish between two different size nanorods that resonated at different wavelengths in separate lymph vessels, and they could distinguish between those two nanorods in the lymph system and the blood vessels. In one study, they could watch individual valves within the lymph vessels open and close to control the flow of fluid in a single direction.

"Nobody has shown that level of detail before," said Liba, who was co-first author on the paper.

Impossible goal
This detailed imaging was de la Zerda's initial goal when he started his lab in 2012, though he was frequently told it would be impossible. "I'm in a small department, but with very accomplished faculty," he said. "One faculty member told me his own life story of taking big risks and that encouraged me. I thought it would be really fun to see if we can make it work and see cells talking to each other in real time."

His gamble got off the ground primarily with a seed grant from Stanford Bio-X, which supports early-stage interdisciplinary research. "That grant allowed us to take a big risk in a direction that was completely unproven," de la Zerda said.

Having shown that the gold nanorods can be seen in living tissue, the next step is to show that those nanorods can bind to specific kinds of cells, like skin cancer or abnormal vessels in early stage macular degeneration. Then, the technique could be used to learn more about how those diseases progress at the molecular level and also evaluate treatments in individual patients, something that previously hadn't been possible.

The work was funded by the U.S. Air Force, the National Institutes of Health Directors Office, the National Science Foundation, the Damon Runyon Cancer Research Foundation, the Susan G. Komen Breast Cancer Foundation, the Mary Kay Foundation, the Donald E. and Delia B. Baxter Foundation, the Center for Cancer Nanotechnology Excellence and Translation, the Arnold and Mabel Beckman Initiative for Macular Research, the Pew Charitable Trusts and the Alexander and Margaret Stewart Trust, the Skippy Frank Foundation, the Claire Giannini Fund and Stanford Bio-X.

.


Related Links
Stanford University
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERN DAILY
Reverse engineering human biology with organs-on-chips
Washington DC (SPX) Mar 15, 2016
"Organs-on-Chips," added last May to the collection of the Museum of Modern Art in New York City and winner of the 2015 Design Award from the London Design Museum, have kept their "classical" design over the years, but have grown in complexity thanks to recent advances. The family of chips, which are microfluidic devices containing hollow channels lined by living human cells, now includes everyt ... read more


INTERN DAILY
US military personnel punished over Afghan hospital attack

After lifejacket art and border piano recitel, Ai Weiwei gets migrant haircut

Prince Harry hopes to draw focus to quake-hit Nepal with visit

Colombia hostilities disrupt 250,000 children's lives since 2013: report

INTERN DAILY
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

INTERN DAILY
400,000-year-old fossils from Spain provide earliest genetic evidence of Neandertals

How the brain detects short sounds

Neanderthal diet: Only 20 percent vegetarian

Early human habitat, recreated for first time, shows life was no picnic

INTERN DAILY
Bacterial resistance to copper in the making for thousands of years

'FARC frog' caught up in Colombian conflict

Elderly Kenyan mauled by lion in Nairobi rush hour

Microbes may not be so adaptable to climate change

INTERN DAILY
Potential Zika virus risk estimated for 50 US cities

Change in mosquito mating may control Zika virus

Testing the evolution of resistance by experiment

Google teams with UNICEF to map Zika virus spread

INTERN DAILY
Rights groups slam China over missing journalist

Facebook CEO enjoys smoggy Beijing run ahead of forum

Sky high prices for Beijing low rises, with school rights

China buys soft power with hard cash in Hollywood

INTERN DAILY
10 gang suspects killed in northern Mexico

Two Mexican marines, suspect killed in shootout

INTERN DAILY
China renews vow to avoid 'hard landing' as congress ends

China mine workers detained after wages protest: locals

China's industrial output growth wanes

China bank lending plummets in February despite loosening




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.