Subscribe free to our newsletters via your




EXO WORLDS
Astronomers discover 'young Jupiter' exoplanet
by Staff Writers
Montreal, Canada (SPX) Aug 14, 2015


A Jupiter-like planet within a young system that could serve as a decoder ring for understanding how planets formed around our Sun has been discovered by a team of astronomers from the University of Montreal's Institute of Research on Exoplanets (iREx) in collaboration with an international team of astronomers led by professor Bruce MacInstosh from Stanford University. One of the best ways to learn how our solar system evolved is in fact to look to younger star systems in the early stages of development. The new planet, called 51 Eridani b, is the first exoplanet discovered by the Gemini Planet Imager, a new instrument operated by an international collaboration headed by Bruce Macintosh, a professor of physics in the Kavli Institute at Stanford. Image courtesy J. Patience and J. Cornelison. Watch a video on the research here.

A Jupiter-like planet within a young system that could serve as a decoder ring for understanding how planets formed around our Sun has been discovered by a team of astronomers from the University of Montreal's Institute of Research on Exoplanets (iREx) in collaboration with an international team of astronomers led by professor Bruce MacInstosh from Stanford University. One of the best ways to learn how our solar system evolved is in fact to look to younger star systems in the early stages of development.

The new planet, called 51 Eridani b, is the first exoplanet discovered by the Gemini Planet Imager, a new instrument operated by an international collaboration headed by Bruce Macintosh, a professor of physics in the Kavli Institute at Stanford. It is a million times fainter than its star and shows the strongest methane signature ever detected on an alien planet, which should yield additional clues as to how the planet formed.

The results are published in the current issue of Science.

A clear line of sight
The Gemini Planet Imager (GPI) was designed specifically for discovering and analyzing faint, young planets orbiting bright stars. NASA's Kepler mission indirectly discovers planets by the loss of starlight when a planet blocks a star. 'To detect planets, Kepler sees their shadow; GPI sees their glow,' said Macintosh. What GPI does is referred to as direct imaging. The astronomers use adaptive optics to sharpen the image of a star, and then block out the starlight. Any remaining incoming light is then analyzed, the brightest spots indicating a possible planet.

"The GPI instrument, an international collaborative effort, has an eagle eye designed to detect and to image exoplanets, "says Rene Doyon, professor at the Physics Department of the University of Montreal and director of iREx, whose collaboration with the laboratory infrared University of California at Los Angeles, Laval University, the Observatoire du Mont-Megantic, the Institut National d'Optques (INO) helped develop, build and test the optics of GPI.

After GPI was installed on the 8-meter Gemini South Telescope in Chile, the team set out to look for planets orbiting young stars. They've looked at almost a hundred stars so far. "This is exactly the kind of planet we envisioned discovering when we designed GPI", says James Graham, professor at UC Berkeley and Project Scientist for GPI.

As far as the cosmic clock is concerned, 51 Eridani is young - only 20 million old - and this is exactly what made the direct detection of the planet possible. When planets coalesce, material falling into the planet releases energy and heats it up. Over the next hundred millions years they radiate that energy away, mostly as infrared light.

Once the astronomers zeroed in on the star, they blocked its light and spotted 51 Eri b orbiting a little farther away from its parent star than Saturn does from the sun. The light from the planet is very faint - more than one million times fainter than it star - but GPI can see it clearly. Observations revealed that it is roughly twice the mass of Jupiter. Other directly-imaged planets are five times the mass of Jupiter or more.

In addition to being the lowest-mass planet ever imaged, it's also one of the coldest - 400 degrees Celsius, whereas others are around 650oC - and features the strongest atmospheric methane signal on record. Previous Jupiter-like exoplanets have shown only faint traces of methane, far different from the heavy methane atmospheres of the gas giants in our solar system.

All of these characteristics, the researchers say, point to a planet that is very much what models suggest Jupiter was like in its infancy.

"Many of the exoplanets astronomers have studied before have atmospheres that look like very cool stars" said Macintosh. "This one looks like a planet."

All these discoveries are all signs that prove that exoplanets would be a copy of the planet Jupiter, but taken in a relatively early period of its history. " This is the first time that we directly detected an exoplanet whose atmosphere and distance to its star is similar to that of the giant planets of our own system," says Julien Rameau, researcher at iREx and UdeM.

The key to the solar system?
In addition to expanding the universe of known planets, GPI will provide clues as to how solar systems form. Astronomers believe that the gas giants in our solar system formed by building up a large, core over a few million years and then pulling in a huge amount of hydrogen and other gasses to form an atmosphere.

But the Jupiter-like exoplanets that have so far been discovered are much hotter than models have predicted, hinting that they could have formed much faster as material collapses quickly to make a very hot planet. This is an important difference. The core-buildup process can also form rocky planets like the Earth; a fast and hot collapse might only make giant gassy planets. 51 Eridani b is young enough that it 'remembers' its formation.

"51 Eri b is the first one that's cold enough and close enough to the star that it could have indeed formed right where it is the 'old-fashioned way,'" Macintosh said. "This planet really could have formed the same way Jupiter did - this whole planetary system could be a lot like ours."

There are hundreds of planets a little bigger than Earth out there, Macintosh said, but there is so far no way to know if they are really "super-Earths" or just micro-sized gas and ice planets like Neptune or something different all together. Using GPI to study more young solar systems such as 51 Eridani, he said, will help astronomers understand the formation of our neighbor planets, and how common that planet-forming mechanism is throughout the universe.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Montreal
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO WORLDS
Tenth transiting 'Tatooine'
San Diego CA (SPX) Aug 12, 2015
Astronomers at the 29th International Astronomical Union General Assembly will announce the discovery of a new transiting "circumbinary" planet, bringing the number of such known planets into double digits. A circumbinary planet orbits two stars, and like the fictional planet "Tatooine" from Star Wars, this planet has two suns in its sky. The discovery marks an important milestone and comes only ... read more


EXO WORLDS
17 dead, 400 hurt in China explosives warehouse blasts

Funds shortage may end UN chopper aid to quake-hit Nepal

China landslide leaves more than 60 missing: local govt

Myanmar asks for international aid as flood misery spreads

EXO WORLDS
Russia may offer Glonass-based navigation system for light aircraft

Antenova announces embedded GNSS antenna for accurate positioning

Surfing for science

Russia develops national high-end navigation system

EXO WORLDS
World population to top 11 billion by end of the century

Wild bonobos show similarities to development of human speech

Body size increase did not play a role in the origins of Homo genus

Take a trip through the brain

EXO WORLDS
New biosensors for managing microbial 'workers'

During mass extinction, no species safe: study

Scientists decode octopus genome, reveal cephalopod secrets

Water striders' jumping on water - understood and imitated after careful observations

EXO WORLDS
Ebola: The epidemic's timeline

It takes a village to ward off dangerous infections

Fighting mosquito resistance to insecticides

Mowing dry detention basins makes mosquito problems worse, team finds

EXO WORLDS
Chinese general with gold statue trove given suspended death sentence

US senators to Obama: Address human rights with China

China bans 120 'harmful' songs online

Prosecutors to be punished if China graft suspects kill selves

EXO WORLDS
All bets are off inside Laos' jungle sin city

Football: FIFA sets election date as Blatter finally rules himself out

Piracy, other maritime crimes rise in Southeast Asia

Mexico army ordered soldiers to kill criminals: NGO

EXO WORLDS
China's yuan devaluation: What is it worth?

China devalues yuan nearly 2% for economic boost

EU says Greek debt talks reach technical, not political, agreement

Chinese dragon losing its shine for foreign firms




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.