Subscribe free to our newsletters via your




ENERGY TECH
Carnegie Mellon chemists characterize 3-D macroporous hydrogels
by Staff Writers
Pittsburgh PA (SPX) Jul 01, 2015


File image.

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels - materials that hold great promise for developing "smart" responsive materials that can be used for catalysts, chemical detectors, tissue engineering scaffolds and absorbents for carbon capture.

Researchers working in the lab of Carnegie Mellon Professor Krzysztof Matyjaszewski published their results in the May issue of Advanced Science, with the article featured on the journal's back cover. Their findings are the latest in Matyjaszewski lab's long history of breakthroughs in polymer science.

The 3DOM hydrogels contain a network of interconnected pores with uniform size. The configuration of these pores allows the materials to hold a large amount of liquid, and influences the material's properties.

However, while the materials are easily made using a process called colloidal crystal templating, their nature has made it difficult for scientists to characterize the exact internal structure of the 3DOM hydrogels.

"The porous structure that makes these materials so useful is also what makes them so hard to characterize," said Hongkun He, a doctoral student in Matyjaszewski's lab. "The pores can hold large amounts of water, but if you remove this water to study them, the pores collapse and you can't map them."

He and his collaborators were able to characterize the 3DOM hydrogels using an indirect electron microscopy method. They soaked the hydrogels in a solution of a crosslinker, which created rigid inverse replicas of the initial 3DOM structures. They then used scanning electron microscopy (SEM) to image the section surfaces of the inverse replicas.

The researchers also found they were able to rehydrate the hydrogels, demonstrating the material's shape memory properties - properties that are key to creating smart materials.

He also was able to resolve the structure of hydrated 3DOM hydrogels using nanoscale resolution X-ray microscopy (ZEISS Xradia 800 Ultra). This technique, which is noninvasive and nondestructive, allowed the researchers to visualize the hydrogels in 3 dimensions under ambient conditions.

"This marks the first time that we have been able to visualize the reversible porous structure within this material," said Matyjaszewski, the J.C. Warner University Professor of Natural Sciences. "Well-defined 3DOM hydrogels provide a versatile platform for a wide variety of functional materials."

The researchers believe that the simple and effective structural characterization methods they developed for the 3DOM hydrogels will advance research into the materials. They have been able to make further chemical modifications to the pores of the 3DOM hydrogels by grafting with organic compounds and polymers.

This process will allow them to use the hydrogels as "stem gels" that can evolve into materials with programmed properties and functions, such as responsive materials, organic-inorganic composites and bioactive hydrogels for digestion or separation of bio (macro) molecules.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Carnegie Mellon University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
New technique for 'seeing' ions at work in a supercapacitor
Cambridge, UK (SPX) Jun 28, 2015
Researchers from the University of Cambridge, together with French collaborators based in Toulouse, have developed a new method to see inside battery-like devices known as supercapacitors at the atomic level. The new method could be used in order to optimise and improve the devices for real-world applications, including electric cars, where they can be used alongside batteries to enhance a vehic ... read more


ENERGY TECH
Donors pledge $4.4bn in aid to quake-hit Nepal

Quake-hit Nepal appeals for aid to rebuild country

Frustration as tourists stay away from quake-hit Nepal

Malaysia says committed to MH370 hunt despite ship pull-out

ENERGY TECH
GPS Industries Launches Troon Connectivity Program

Raytheon Demonstrates Advanced GPS OCX Capabilities

Russia Begins Mass Production of Glonass-K1 Navigation Satellites

Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

ENERGY TECH
An early European had a close Neandertal ancestor

Climate change may destroy health gains: panel

Tool use is 'innate' in chimpanzees but not bonobos, their closest evolutionary relative

400,000-year-old dental tartar provides earliest evidence of manmade pollution

ENERGY TECH
Lupita Nyong'o joins fight to save Africa's elephants

Ecuador releases 201 tortoises on Galapagos island

Brazil to open Latin America's first elephant sanctuary

First lions to return to Rwanda after over two decades

ENERGY TECH
Five-year window for preventing AIDS rebound: experts

Bill Gates hopeful of AIDS vaccine in 10 years

South Korea passes new law to curb MERS outbreak

Ebola epidemic was disaster for malaria control: study

ENERGY TECH
Hundreds protest against Dalai Lama in Britain

China's Great Wall is disappearing: report

Billions of China's lottery funds misused: report

Chinese who buy children to be prosecuted: report

ENERGY TECH
Malaysian navy shadows tanker, urges hijackers to give up

Polish bootcamp trains security contractors for mission impossible

A blast and gunfire: Mexico's chopper battle

ENERGY TECH
China manufacturing sees slight pick-up in June

World Bank warns China over state financial control

China presses US to invest more in its own economy

China to scrap constraint on bank lending




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.