Subscribe free to our newsletters via your




TIME AND SPACE
Clay sheets stack to form proton conductors
by Staff Writers
Evanston IL (SPX) Jul 14, 2015


This is a scanning electron microscopy image of stacked clay sheets. When two-dimensional sheets of the clay, called vermiculite, are exfoliated in water, they carry negative charges, attracting positively charged protons. After the sheets dry, they self-assemble into paper-like films. The near 1-nanometer spacing between the layers serves as the nanochannels that can concentrate protons for conduction. Image courtesy Jiaxing Huang. For a larger version of this image please go here.

Northwestern Engineering professor Jiaxing Huang has developed a cheaper, more stable proton-conducting system. To find the key ingredient, he had to look no further than his own backyard.

"We used a clay that you can buy at a gardening store," said Huang, associate professor of materials science and engineering at Northwestern University's McCormick School of Engineering. "I like to call it a 'down-to-earth' material."

When a proton is transported, it generates an electrical current that plays a key role in both nature and technology. Engineers are particularly interested in harnessing proton conduction for catalysis, electrochemical sensors and reactors, and harvesting energy. In fuel cells, for example, a proton must be transported across a membrane in order to reach a cathode, completing the conversion of chemical energy into electricity.

In cells, protons can be transported through nanopores formed by membrane proteins. Engineers have been trying to mimic this by creating artificial proton nanochannels. For the past 20 years, they have used nanolithography to create nanochannels in silicon, glass, and other materials to enhance ionic transport and conductivity. Those nanochannels do result in higher conductivity, but there are two major problems: nanolithography is complex and expensive, and the final material is difficult to produce on a large scale.

"Many types of nanochannels have been demonstrated on a substrate," Huang said. "But it has been difficult to produce them in large quantities, say, a substrate filled with nanochannels."

Huang's new solution capitalizes on clay's natural properties. When two-dimensional sheets of the clay, called vermiculite, are exfoliated in water, they carry negative charges, attracting positively charged protons. After the sheets dry, they self-assemble into paper-like films. The near 1-nanometer spacing between the layers serves as the nanochannels that can concentrate protons for conduction.

Supported by the Office of Naval Research and Northwestern's Materials Research Science and Engineering Center, Huang's research is described in a paper published in Nature Communications. Other authors of the paper include former visiting student Jiao-Jing Shao, former postdoctoral scholar Kalyan Raidonga, and graduate student Andrew Koltonow. Shao and Raidongo have completed their training at Northwestern and are now professors in China and India, respectively.

Compared to graphene-based sheets and other two-dimensional materials, clay layers have significant advantages for constructing ion conducting devices and materials. Clay is readily available and can be exfoliated in water by ionic exchange, which is much more benign than the chemical exfoliation needed for graphene and other materials. It also has extraordinary chemical and thermal stability, capable of withstanding temperatures higher than 500 degrees Celsius.

"Clay has extraordinary thermal stability," Huang said. "We want to create a proton conducting system that can sustain very high temperatures because some of the best proton-conducting materials out there can't do that."

The simplicity of the material processing techniques required to produce such 2-D nanochannels makes it easy to scale up. Therefore, instead of resulting in a small number of channels, over 30 percent of the volume of Huang's clay membrane is made of proton-conducting nanochannels.

Huang calls his clay membrane a new example of "bulk nanostructured materials," which refers to a macroscopic form of materials with structural units at nanometer scale. Bulk nanostructure materials are of great interest, partially because they have new properties that are untenable to their nanostructured units.

In this case, the individual clay sheets do not have proton-conducting properties. They need to assemble face-to-face to generate the final bulk form of material, in which all of the sheets collectively support the proton-conducting properties.

"We're studying nanomaterials beyond the individual nanostructured unit," he said. "This is a bulk material that can be readily seen, manipulated, and used."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Researcher devises method to untangle, analyze 'controlled chaos'
Bloomington IN (SPX) Jul 14, 2015
A researcher at Indiana University has developed a new mathematical framework to more effectively analyze "controlled chaos," or how interactions among highly complex systems affect their operation and vulnerability. The new method could potentially be used to improve the resilience of complex critical systems, such as air traffic control networks and power grids, or slow the spread of threats a ... read more


TIME AND SPACE
We're headed for Titanic-like crash, climate talks hear

Amnesty urges EU to focus on rescuing migrants

Nepal quake: Flat owners baulk at return to high-life

Pope takes message to defend poor, environment to Bolivia

TIME AND SPACE
Russian, Chinese Navigation Systems to Accommodate BRICS Members

Russia, India Cooperate on Space Exploration, Glonass Satellite System

China's Beidou navigation system more resistant to jamming

Global Positioning System: A Generation of Service to the World

TIME AND SPACE
Neuroscientists establish brain-to-brain networks in primates, rodents

Researchers find the organization of the brain is perfect

World's oldest man dies at 112 in Japan

Revised view of brain circuit reveals how we avoid powerful odors

TIME AND SPACE
Deceptive flowers

Plant's sonar-bouncing leaves attract bats -- and their poo

The bizarre mating habits of flatworms

Unraveling iridescence

TIME AND SPACE
Algerian women with HIV suffer 'double punishment'

Study explains how dengue virus adapts as it travels

As blacklegged ticks migrate, Lyme disease follows

Scientists, feds aim to curb spread of brucellosis in Yellowstone

TIME AND SPACE
China detains dozens of rights lawyers: Amnesty

China restricts passports for Tibetans: rights group

China firm to punish 'unscheduled' pregnancies: report

Dalai Lama birthday celebrations draw support, protests in US

TIME AND SPACE
Piracy, other maritime crimes rise in Southeast Asia

Mexico army ordered soldiers to kill criminals: NGO

Malaysian navy shadows tanker, urges hijackers to give up

Polish bootcamp trains security contractors for mission impossible

TIME AND SPACE
China trade slumps in first half of year: government

Asia markets up as Europe leaders struggle for Greece deal

China's Q2 GDP growth beats forecasts as stimulus kicks in

China consumer inflation rate rises to 1.4% in June: govt




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.