Subscribe free to our newsletters via your




STELLAR CHEMISTRY
Decoding the gravitational evolution of dark matter halos
by Staff Writers
Tokyo, Japan (SPX) Jan 14, 2015


In the standard scenario for the formation of a cosmic structure, dark matter, which has an energy budget in the universe that is approximately five times greater than ordinary matter (e.g., atoms), first gathers gravitationally to form a crowded region, the so-called dark matter halos.

Researchers at Kavli IPMU and their collaborators have revealed that considering environmental effects such as a gravitational tidal force spread over a scale much larger than a galaxy cluster is indispensable to explain the distribution and evolution of dark matter halos around galaxies.

A detailed comparison between theory and simulations made this work possible. The results of this study, which are published in Physical Review D as an Editors' Suggestion, contribute to a better understanding of fundamental physics of the universe.

In the standard scenario for the formation of a cosmic structure, dark matter, which has an energy budget in the universe that is approximately five times greater than ordinary matter (e.g., atoms), first gathers gravitationally to form a crowded region, the so-called dark matter halos.

Then these dark matter halos attract atomic gas and eventually form stars and galaxies. Hence, to extract cosmological information from a three-dimensional galaxy map observed in SDSS BOSS, the SuMIRe project, etc., it is important to understand how clustering of dark matter halos has gravitationally evolved throughout cosmic history. (This is referred to as the halo bias problem.)

"Various studies have described the halo bias theoretically," said Teppei Okumura, a project researcher involved in the study from Kavli IPMU. "However, none of them reproduced simulation results well. So, we extended prior studies motivated by a mathematical symmetry argument and examined if our extension works."

The authors demonstrate that higher-order nonlocal terms originating from environmental effects such as gravitational tidal force must be taken into account to explain the halo bias in simulations. They also confirm that the size of the effect agrees well with a simple theoretical prediction.

"The results of our study allow the distribution of dark matter halos to be more accurately predicted by properly taking into account higher-order terms missed in the literature," said Shun Saito, the principal investigator of the study from Kavli IPMU.

"Our refined model has been already applied to actual data analysis in the BOSS project. This study certainly improves the measurement of the nature of dark energy or neutrino masses. Hence, it has led to a better understanding of the fundamental physics of the universe."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Kavli Institute for the Physics and Mathematics of the Universe
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Researchers detect possible signal from dark matter
Lausanne, Switzerland (SPX) Dec 14, 2014
Could there finally be tangible evidence for the existence of dark matter in the Universe? After sifting through reams of X-ray data, scientists in EPFL's Laboratory of Particle Physics and Cosmology (LPPC) and Leiden University believe they could have identified the signal of a particle of dark matter. This substance, which up to now has been purely hypothetical, is run by none of the sta ... read more


STELLAR CHEMISTRY
Families of China stampede dead demand answers

Can quake-hit Haiti manufacture itself a hi-tech future?

Shanghai cancels lantern festival after stampede

World powers jostle for influence in AirAsia plane hunt

STELLAR CHEMISTRY
W3C and OGC to Collaborate to Integrate Spatial Data on the Web

AirAsia disappearance fuels calls for real-time tracking

Four Galileo satellites at ESA test centre

Russia to Debate US Discrimination of Glonass System in UN: Reports

STELLAR CHEMISTRY
No benefit from nutrient additions to water and energy drinks

Summer no sweat for Aussies but winter freeze fatal

Stress and social media: it's complicated

World's oldest butchering tools gave evolutionary edge to speech

STELLAR CHEMISTRY
Dinosaurs wiped out rapidly in Europe 66 million years ago

Evolution: Rock sponges split up

Swedish court gives green light to wolf hunters

An ecological rule for animals applies to flowers

STELLAR CHEMISTRY
Flu shot just 23 percent effective: US

UN Ebola czar says epidemic has 'passed the tipping point'

How to predict responses to disease

Hybrid 'super mosquito' resistant to insecticide-treated bed nets

STELLAR CHEMISTRY
China media: Zhou, Bo formed 'clique' to challenge leaders

China steps up political prosecutions: rights group

China linguist's 109th birthday wish: democracy

Fewer Chinese parents than expected seek 2nd children

STELLAR CHEMISTRY
China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

Nobel protester sought to draw attention to 'murdered Mexican students'

Corruption on rise in Turkey, China: Transparency

STELLAR CHEMISTRY
China bank lending up in 2014 as govt seeks credit boost

China December inflation rises to 1.5%: govt

Standard Chartered to axe further 2,000 jobs

China December manufacturing index at 49.6: HSBC




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.