Subscribe free to our newsletters via your




SOLAR DAILY
Demystifying nanocrystal solar cells
by Staff Writers
Zurich, Switzerland (SPX) Jan 29, 2015


File image.

Scientists are focusing on nanometre-sized crystals for the next generation of solar cells. These nanocrystals have excellent optical properties. Compared with silicon in today's solar cells, nanocrystals can be designed to absorb a larger fraction of the solar light spectrum.

However, the development of nanocrystal-based solar cells is challenging: "These solar cells contain layers of many individual nano-sized crystals, bound together by a molecular glue. Within this nanocrystal composite, the electrons do not flow as well as needed for commercial applications," explains Vanessa Wood, Professor of Materials and Device Engineering at ETH Zurich.

Until now, the physics of electron transport in this complex material system was not understood so it was impossible to systematically engineer better nanocrystal composites.

Wood and her colleagues conducted an extensive study of nanocrystal solar cells, which they fabricated and characterized in their laboratories at ETH Zurich. They were able to describe the electron transport in these types of cells via a generally applicable physical model for the first time.

"Our model is able to explain the impact of changing nanocrystal size, nanocrystal material, or binder molecules on electron transport," says Wood. The model will give scientists in the research field a better understanding of the physical processes inside nanocrystal solar cells and enable them to improve solar cell efficiency.

Promising outlook thanks to quantum effects
The reason for the enthusiasm of many solar cell researchers for the tiny crystals is that at small dimensions effects of quantum physics come into play that are not observed in bulk semiconductors.

One example is that the physical properties of the nanocrystals depend on their size. And because scientists can easily control nanocrystal size in the fabrication process, they are also able to influence the properties of nanocrystal semiconductors and optimize them for solar cells.

One such property that can be influenced by changing nanocrystal size is the amount of sun's spectrum that can be absorbed by the nanocrystals and converted to electricity by the solar cell.

Semiconductors do not absorb the entire sunlight spectrum, but rather only radiation below a certain wavelength, or - in other words - with an energy greater than the so-called band gap energy of the semiconductor. In most semiconductors, this threshold can only be changed by changing the material.

However, for nanocrystal composites, the threshold can be changed simply by changing the size of the individual crystals. Thus scientists can select the size of nanocrystals in such a way that they absorb the maximum amount of light from a broad range of the sunlight spectrum.

An additional advantage of nanocrystal semiconductors is that they absorb much more sunlight than traditional semiconductors. For example, the absorption coefficient of lead sulfide nanocrystals, used by the ETH researchers in their experimental work, is several orders of magnitude greater than that of silicon semiconductors, used traditionally as solar cells.

Thus, a relatively small amount of material is sufficient for the production of nanocrystal solar cells, making it possible to make very thin, flexible solar cells.

Need for greater efficiency
The new model put forth by the ETH researchers answers a series of previously unresolved questions related to electron transport in nanocrystal composites. For example, until now, no experimental evidence existed to prove that the band gap energy of a nanocrystal composite depends directly on the band gap energy of the individual nanocrystals. "For the first time, we have shown experimentally that this is the case," says Wood.

Over the past five years, scientists have succeeded in greatly increasing the efficiency of nanocrystal solar cells, yet even in the best of these solar cells just 9 percent of the incident sunlight on the cell is converted into electrical energy.

"For us to begin to consider commercial applications, we need to achieve an efficiency of at least 15 percent," explains Wood. Her group's work brings researchers one step closer to improving the electron transport and solar cells efficiency.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Calculating the future of solar-fuel refineries
Madison WI (SPX) Jan 28, 2015
A team of University of Wisconsin-Madison engineers has developed a new tool to help plot the future of solar fuels. In a paper recently published in the journal Energy and Environmental Science, a team led by chemical and biological engineering Professors Christos Maravelias and George Huber outlined a tool to help engineers better gauge the overall yield, efficiency and costs associated with s ... read more


SOLAR DAILY
Probe after 11 die in NATO training jet crash in Spain

Hackers target Malaysia Airlines, threaten data dump

Shanghai stampede showed 'critical neglect': mayor

Protection against radiation exposure

SOLAR DAILY
Congressman claims relying on GLONASS jeopardizes US lives

Turtles use unique magnetic compass to find birth beach

W3C and OGC to Collaborate to Integrate Spatial Data on the Web

AirAsia disappearance fuels calls for real-time tracking

SOLAR DAILY
Scientists extend telomeres to slow cell aging

Early human ancestors used their hands like modern humans

A mother's baby talk isn't easier to understand

ORNL model explores location of future US population growth

SOLAR DAILY
Penn research shows relationship critical for how cells ingest matter

Ivory in Uganda seizure likely stolen from impound vault

China officials dine on endangered salamander: reports

Uganda seizes massive ivory and pangolin haul

SOLAR DAILY
Bird flu confirmed in Canadian patient after China trip

No new polio cases in Syria reported for a year: WHO

Two Nigerian cities hit by bird flu: authorities

Nigeria reports H5N1 bird flu in five states

SOLAR DAILY
China university 'expels student over genetic blood disease'

China has mountain to climb with 2022 Winter Olympics bid

China anti-terror law may 'inflict grave harm': rights group

China workers decline as demographic time bomb ticks

SOLAR DAILY
China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

Nobel protester sought to draw attention to 'murdered Mexican students'

Corruption on rise in Turkey, China: Transparency

SOLAR DAILY
ECB QE could cause "competitive depreciation": China

China's economy not headed for 'hard landing': PM

China bank lending up in 2014 as govt seeks credit boost

China's economic growth slows to 24-year low: govt




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.