Subscribe free to our newsletters via your




TIME AND SPACE
Experiment provides route to macroscopic high-mass superpositions
by Staff Writers
Southampton, UK (SPX) Oct 27, 2014


File image.

University of Southampton scientists have designed a new experiment to test the foundations of quantum mechanics at the large scale.

Standard quantum theory places no limit on particle size and current experiments use larger and larger particles, which exhibit wave-like behaviour. However, at these masses experiments begin to probe extensions to standard quantum mechanics, which describe the apparent quantum-to-classical transition.

Now, Southampton researchers, with colleagues from the University of Duisburg-Essen in Germany, have designed a new type of experiment which will advance the current state-of-the-art experiments by a factor of 100, from 10,000 atomic mass units (amu), roughly equal to the mass of a single proton, to one million amu.

The research is published in Nature Communications.

They propose an interferometer with a levitated, optically cooled, and then free-falling silicon nanoparticle in the mass range of one million amu, delocalised over more than 150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating.

Individual particles are dropped and diffracted by a standing UV laser wave, such that interference of neighbouring diffraction orders produces a resonant near-field fringe pattern. In order to record the interferogram, the nanospheres are deposited on a glass slide and their arrival positions are recorded via optical microscopy.

The researchers argue that the choice of silicon, due to its specific material characteristics, will produce reliable high mass interference, unaffected by environmental decoherence, in a setup that can be produced with current technology.

Dr James Bateman, from Physics and Astronomy at the University of Southampton and co-author of the study, says: "This work is a natural extension of atomic physics, which has revolutionised many technologies. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions.

"This current work is not technology-driven, but it does ask difficult questions of relevance to future quantum devices. Placing larger and larger mechanical systems into quantum states has implications for what can be done with the technology. We hope that our work will lead to a better understanding of the fundamental physics and hence to more advanced quantum devices."

As time-of-flight, and therefore mass, is limited by the free-fall distance under earth's gravity, a space-based mission is planned by the Macroscopic quantum resonators (MAQRO) consortium with which the researchers are involved; this could bring a further factor of 100 in mass.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Southampton
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Cooling with molecules
Bielefeld, Germany (SPX) Oct 24, 2014
An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius - only just above absolute zero - using magnetic molecules. The physicists and chemists presented their new investigation in the scientific journal Nature Communications. It was developed by six scientists from Bielefeld University, the University ... read more


TIME AND SPACE
British police pay mother of spy's child

Philippines' Aquino criticises typhoon rebuilding delays

Natural disasters killed over 22,000 in 2013: Red Cross

Rescuers airlift 154 to safety after deadly Nepal storm

TIME AND SPACE
Russian Bank Offers 5 Billion Rubles for GLONASS

Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

ISRO to Launch India's Third Navigation Satellite on October 16

TIME AND SPACE
Death and social media: what happens next

Highest altitude ice age human occupation documented in Peruvian Andes

Parts of UK 'under siege' from immigration: defence minister

Reducing population is no environmental quick fix

TIME AND SPACE
How ferns adapted to one of Earth's newest and most extreme environments

Florida lizards evolve rapidly, within 15 years and 20 generations

Study uses DNA sequences to look back in time at plant evolution

Using microscopic bugs to save the bees

TIME AND SPACE
New commander takes over US Ebola mission in West Africa

Visiting US envoy condemns response to Ebola epidemic

Evolutionary roots of Ebola more ancient than previously thought

Is there a way out of the Ebola epidemic

TIME AND SPACE
China plans to scrap death penalty for 9 crimes: Xinhua

Cultural Revolution evoked with China mass sentencing

UN rights chief says in talks with China on Tibet visit

China's Xi echoes Mao on the arts: state media

TIME AND SPACE
Hijacked Singaporean ship released near Nigeria: Seoul

TIME AND SPACE
Firm in China's first bond default to be restructured

China economic growth falls to five-year low of 7.3%: govt

Australia poised to seize assets of corrupt Chinese: report

How Germany and the euro are keeping Europe in recession




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.