Subscribe free to our newsletters via your




CHIP TECH
Future electronics based on carbon nanotubes
by Staff Writers
Washington DC (SPX) Apr 10, 2015


Thermal gradients associated with mild heating of a metallic carbon nanotube induces thermocapillary flows in a thin organic overcoat. The result is an open trench with the tube at the base. Image courtesy J.Rogers/UIUC.

The exceptional properties of tiny molecular cylinders known as carbon nanotubes have tantalized researchers for years because of the possibility they could serve as a successors to silicon in laying the logic for smaller, faster and cheaper electronic devices.

First of all they are tiny - on the atomic scale and perhaps near the physical limit of how small you can shrink a single electronic switch. Like silicon, they can be semiconducting in nature, a fact that is essential for circuit boards, and they can undergo fast and highly controllable electrical switching.

But a big barrier to building useful electronics with carbon nanotubes has always been the fact that when they're arrayed into films, a certain portion of them will act more like metals than semiconductors - an unforgiving flaw that fouls the film, shorts the circuit and throws a wrench into the gears of any potential electronic device.

In fact, according to University of Illinois-Urbana Champaign professor John Rogers, the purity needs to exceed 99.999 percent - meaning even one bad tube in 100,000 is enough to kill an electronic device. "If you have lower purity than that," he said, "that class of materials will not work for semiconducting circuits."

Now Rogers and a team of researchers have shown how to strip out the metallic carbon nanotubes from arrays using a relatively simple, scalable procedure that does not require expensive equipment. Their work is described this week in the Journal of Applied Physics, from AIP Publishing.

The Road to Purification
Though it has been a persistent problem for the last 10-15 years, the challenge of making uniform, aligned arrays of carbon nanotubes packed with good densities on thin films has largely been solved by several different groups of scientists in recent years, Rogers said.

That just left the second problem, which was to find a way to purify the material to make sure that none of the tubes were metallic in character - a thorny problem that had remained unsolved. There were some methods of purification that were easy to do but fell far short of the level of purification necessary to make useful electronic components. Very recent approaches offer the right level of purification but rely on expensive equipment, putting the process out of reach of most researchers.

As the team reports this week, they were able to deposit a thin coating of organic material directly on top of a sheet of arrayed nanotubes in contact with a sheet of metal. They then applied current across the sheet, which allowed the current to flow through the nanotubes that were metal conductors - but not the bulk of the tubes, which were semiconducting.

The current heated up the metal nanotubes a tiny amount - just enough to create a "thermal capillary flow" that opened up a trench in the organic topcoat above them. Unprotected, the metallic tubes could then be etched away using a standard benchtop instrument, and then the organic topcoat could be washed away. This left an electronic wafer coated with semiconducting nanotubes free of metallic contaminants, Rogers said. They tested it by building arrays of transistors, he said.

"You end up with a device that can switch on and off as expected, based on purely semiconducting character," Rogers said.

The article, "Direct current injection and thermocapillarity flow for purification of aligned arrays of single-walled carbon nanotubes," is authored by Xu Xie, Muhammad A. Wahab, Yuhang Li, Ahmad E. Islam, Bojan Tomic, Jiyuan Huang, Branden Burns, Eric Seabron, Simon N. Dunham, Frank Du, Jonathan Lin, William L. Wilson, Jizhou Song, Yonggang Huang, Muhammad A. Alam and John A. Rogers. It appears in the Journal of Applied Physics on April 7, 2015 (DOI: 10.1063/1.4916537).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Cooling massive objects to the quantum ground state
Beijing (SPX) Apr 02, 2015
Cooling of macroscopic and mesoscopic objects to the quantum ground states are of great interests not only for fundamental study of quantum theory but also for the broad applications in quantum information processing and high-precision metrology. However, the cooling limit is subjected to the quantum backaction, and ground state cooling is possible only in the resolved sideband limit, which requ ... read more


CHIP TECH
McMurdo receives certification for Kannad navigation interface

Nine dead in Myanmar jade mine landslide: state media

UN chief calls for more aid for Iraq displaced

Baby among 15 killed by landslide in Indian Kashmir

CHIP TECH
China to launch three or four more BeiDou satellites this year

Two new satellites join the Galileo constellation

China launches upgraded satellite for independent SatNav system

India Launches Fourth Satellite in Effort to Develop Own Navigation System

CHIP TECH
'Little Foot' 3.67 million years old

How we hear distance

Researchers improve efficiency of human walking

Earliest humans had diverse range of body types, just as we do today

CHIP TECH
Keeping hungry jumbos at bay

Scientists discover why flowers bloom earlier in a warming climate

Lizard activity levels can help scientists predict environmental change

Malawi postpones ivory torching

CHIP TECH
Meningitis epidemic kills 45 in Niger

Jordan reports five swine flu deaths since Jan 1

New class of insecticides offers safer, more targeted mosquito control

Gates calls for 'germ games' instead of war games

CHIP TECH
Bonfire of the vanities? Chinese offerings go up in smoke

Fashion victim: Chinese designers face struggle

China drives 66 golf courses into the rough

Three Chinese tourists killed in Thai bus crash

CHIP TECH
Sagem-led consortium intoduces anti-piracy system

China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

CHIP TECH
China sees first default on bond principal

Former China central bank governor helping graft probe: report

China official PMI shows expansion in positive sign

China home prices fall in March; Bank deposit insurance starts May 1




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.