Subscribe free to our newsletters via your




ROBO SPACE
Giving robots a more nimble grasp
by Staff Writers
Boston MA (SPX) Aug 05, 2015


A simple robotic gripper can adjust its grip using the environment. Here, a robot grips a rod lightly while pushing it against a tabletop. This allows the rod to rotate in the robot's fingers. Image courtesy of the researchers/MIT News.

Most robots on a factory floor are fairly ham-handed: Equipped with large pincers or claws, they are designed to perform simple maneuvers, such as grabbing an object, and placing it somewhere else in an assembly line. More complex movements, such as adjusting the grasp on an object, are still out of reach for many industrial robots.

Engineers at MIT have now hit upon a way to impart more dexterity to simple robotic grippers: using the environment as a helping hand. The team, led by Alberto Rodriguez, an assistant professor of mechanical engineering, and graduate student Nikhil Chavan-Dafle, has developed a model that predicts the force with which a robotic gripper needs to push against various fixtures in the environment in order to adjust its grasp on an object.

For instance, if a robotic gripper aims to pick up a pencil at its midpoint, but instead grabs hold of the eraser end, it could use the environment to adjust its grasp. Instead of releasing the pencil and trying again, Rodriguez's model enables a robot to loosen its grip slightly, and push the pencil against a nearby wall, just enough to slide the robot's gripper closer to the pencil's midpoint.

Partnering robots with the environment to improve dexterity is an approach Rodriguez calls "extrinsic dexterity" - as opposed to the intrinsic dexterity of, say, the human hand. To adjust one's grip on a pencil in a similar fashion, a person, using one hand, could simply spider-crawl her fingers towards the center of the pencil. But programming such intrinsic dexterity in a robotic hand is extremely tricky, significantly raising a robot's cost.

With Rodriguez's new approach, existing robots in manufacturing, medicine, disaster response, and other gripper-based applications may interact with the environment, in a cost-effective way, to perform more complex maneuvers.

"Chasing the human hand is still a very valid direction [in robotics]," Rodriguez says. "But if you cannot afford having a $100,000 hand that is very complex to use, this [method] brings some dexterity to very simple grippers."

Rodriguez and Chavan-Dafle will present a paper detailing their new approach in September at the International Conference on Intelligent Robotics and Systems.

Giving robotics a push
Rodriguez is currently exploring multiple ways in which the environment may be exploited to increase the dexterity of simple robotic grippers. In ongoing work, his group is looking for ways in which a robot might use gravity to toss and catch an object, as well as how surfaces like a tabletop may help a robot roll an object between its fingers.

In this most recent paper, the group investigates an approach to extrinsic dexterity called "prehensile pushing" - exploiting fixtures in the environment to manipulate a grasped object.

"We're sort of outsourcing that dexterity that you don't have in the gripper to the environment and the arm," Rodriguez explains. "Instead of dexterity that's intrinsic to the hand, it's extrinsic, in the environment."

The researchers developed a model that describes the forceful interaction between a gripper, a grasped object, and different types of external fixtures such as corners, edges, or surfaces. To predict how an object may move as a gripper pushes it against a given fixture, the researchers designed the model to take into account various factors, including the frictional forces between the gripper and the object, and between the object and the environment, as well as the object's mass, inertia, and shape.

"Exploiting the environment"
In its current iteration, the model predicts the force a gripper must exert, on the object and the environment, to maneuver the object to a desired orientation. For instance, how tight should a robot grip a bar, and how hard must it push that bar against a point, to rotate the bar 45 degrees?

Rodriguez and Chavan-Dafle tested the model's predictions against actual experiments, using a simple two-fingered gripper to manipulate a short rod, either rolling, pivoting, or sliding it against three fixtures: a point, a line, and a plane. The team measured the forces the robot exerted to maneuver the rod into the desired orientations, and compared the experimental forces with the model's predicted forces.

"The agreement was pretty good," Rodriguez says. "We've validated the model. Now we're working on the planning side, to see how to plan motions to generate certain trajectories. One of the things we want to ask in the future is: How do you engineer fixtures in the environment so that a robot's motions are more reliable, and can be executed faster?"

Ultimately, Rodriguez sees extrinsic dexterity as an inexpensive way to make simple robots more nimble for a variety of uses: A surgical robot may push a scalpel against an operating table to adjust its grip, while a forensic robot in the field may angle a piece of evidence against a nearby rock to better examine it.

"Exploiting the environment is, and will be, important for robots and the research community," Rodriguez says. "Any applications where you have limitations in terms of payload or cost or complexity, areas like manufacturing, or surgery, or field operations, or even space exploration - whenever you have a gripper that is not dexterous like a human hand, this [method] gives you some of that dexterity."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Object recognition for robots
Boston MA (SPX) Aug 05, 2015
John Leonard's group in the MIT Department of Mechanical Engineering specializes in SLAM, or simultaneous localization and mapping, the technique whereby mobile autonomous robots map their environments and determine their locations. Last week, at the Robotics Science and Systems conference, members of Leonard's group presented a new paper demonstrating how SLAM can be used to improve objec ... read more


ROBO SPACE
Fukushima operator says 20 tons of rubble lifted from destroyed reactor

Philippines Haiyan rebuilding 'inadequate', says UN

Cheers as UN irons out roadmap to end poverty

Top US general advises UN to improve peacekeeping

ROBO SPACE
Surfing for science

Russia develops national high-end navigation system

ISRO is hoping its 'BIG' offering would gain popularity in the market

China launches two satellites as it builds GPS rival

ROBO SPACE
An all-natural sunscreen derived from algae

It don't mean a thing if the brain ain't got that swing

Swipe right: dating apps change US courtship rituals

For dating apps in Asia, love by numbers or chaperone

ROBO SPACE
Atomic view of microtubules

Researchers strategize to outsmart bacteria

Zimbabwe seeks US hunter's extradition for killing lion

UN adopts resolution to fight wildlife poaching

ROBO SPACE
Ebola: The epidemic's timeline

It takes a village to ward off dangerous infections

Fighting mosquito resistance to insecticides

Mowing dry detention basins makes mosquito problems worse, team finds

ROBO SPACE
Artist Ai Weiwei flies to Germany as Britain slammed over visa

China steps up campaign to remove church crosses

China artist Ai Weiwei says has German visa

China sentences 14 'Almighty God' members to jail: Xinhua

ROBO SPACE
Football: FIFA sets election date as Blatter finally rules himself out

Piracy, other maritime crimes rise in Southeast Asia

Mexico army ordered soldiers to kill criminals: NGO

Malaysian navy shadows tanker, urges hijackers to give up

ROBO SPACE
China new home prices up in July: survey

China manufacturing index hits two-year low: survey

China manufacturing hits 15-month low: survey

Pollution not contagion: eurozone debt market survives Greek crisis




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.