Subscribe free to our newsletters via your




TECH SPACE
Indications of the origin of the Spin Seebeck effect discovered
by Staff Writers
Mainz, Germany (SPX) Sep 09, 2015


File image.

The recovery of waste heat in all kinds of processes poses one of the main challenges of our time to making established processes more energy-efficient and thus more environmentally friendly. The Spin Seebeck effect (SSE) is a novel, only rudimentarily understood effect, which allows for the conversion of a heat flux into electrical energy, even in electrically non-conducting materials. A team of physicists at Johannes Gutenberg University Mainz (JGU), the University of Konstanz, TU Kaiserslautern, and the Massachusetts Institute of Technology (MIT) have now succeeded in identifying the origin of the Spin Seebeck effect.

By the specific investigation of the material- and temperature-dependence of the effect, the German and American researchers were able to show that it exhibits a characteristic length scale attributable to its magnetic origin. This finding now allows for the advancement of this long-time controversial effect in terms of first applications. The resulting research paper was published in the scientific journal Physical Review Letters, with a fellow of the JGU-based Graduate School of Excellence "Materials Science in Mainz" (MAINZ) as first author.

The Spin Seebeck effect represents a so-called spin-thermoelectric effect, which enables the conversion of thermal energy into electrical energy. Contrary to conventional thermoelectric effects it also enables the recovery of heat energy in magnetic insulators in combination with a thin metallic layer.

Owing to this characteristic, it was assumed that the effect originates from thermally excited magnetic waves. The currently employed method of measurement, which makes use of a second metallic layer converting these magnetic waves into a measurable electrical signal, has so far not been able to allow for a distinct assignment of experimentally detected signals.

By measuring the effect for different material thicknesses in the range of a few nanometers up to several micrometers as well as for different temperatures, the scientists have found characteristic behavior. In thin films the signal amplitude increases with increasing material thickness and eventually saturates after exceeding a sufficient thickness.

In combination with the detected enhancement of this critical thickness at low temperatures, the agreement with the theoretical model of thermally excited magnetic waves developed at Konstanz could be demonstrated. With these results, the researchers were able for the first time to reveal a direct relation between the assumed thermally excited magnetic waves and the effect.

"This result provides us with an important building block of the puzzle of the comprehension of this new, complex effect, unambiguously demonstrating its existence," said Andreas Kehlberger, Ph.D. student at Johannes Gutenberg University Mainz and first author of the publication.

"I am very pleased that this exciting result emerged in a cooperation of a doctoral candidate out of my group at the Graduate School of Excellence 'Materials Science in Mainz' together with co-workers from Kaiserslautern and our colleagues from Konstanz, with whom we collaborate within the Priority Program 'Spin Caloric Transport' funded by the German Research Foundation (DFG)," emphasized Professor Mathias Klaui, director of the MAINZ Graduate School of Excellence based at Mainz University.

"It shows that complex research is only possible in teams, for instance with funding by the German Federal Ministry of Education and Research (BMBF) through the Mainz-MIT Seed Fund."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Johannes Gutenberg Universitaet Mainz
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Bubble, bubble ... boiling on the double
Boston MA (SPX) Sep 09, 2015
The boiling of water is at the heart of many industrial processes, from the operation of electric power plants to chemical processing and desalination. But the details of what happens on a hot surface as water boils have been poorly understood, so unexpected hotspots can sometimes melt expensive equipment and disable plants. Now researchers at MIT have developed an understanding of what ca ... read more


TECH SPACE
France Nears Completion of Chernobyl Steel Confinement Structure

EU chief calls human traffickers 'murderers', urges crackdown

France cash pledge for persecuted Mideast minorities

China outrage after officials say blast relatives 'calm'

TECH SPACE
Soyuz ready for liftoff with two Galileo satellites

Soyuz set to launch 2 Galileo navigation satellites

Mission team ready for Galileo launch

China Deploys New Security System to Ensure Safety at Military Parade

TECH SPACE
Did grandmas make people pair up?

New film aims to capture 'Human' experience

Largest-yet monument unearthed at Stonehenge

US Catholics mostly accepting of non-traditional families

TECH SPACE
Common molecular tool kit shared by organisms across the tree of life

Before nature selects, gene networks steer a course for evolution

New calves raise hopes for world's rarest rhino

Some birds may lose part of range under climate change scenarios

TECH SPACE
US Army orders lab safety review, freeze in anthrax scandal

New Ebola death in Sierra Leone sets back efforts to beat epidemic

Pneumonic plague kills eight in Madagascar

WHO to study use of sanctions as part of global epidemic response

TECH SPACE
You give music a bad name: Bon Jovi China gigs cancelled

China says Tibet Lama appointee missing for 20 years 'living normally'

China's government to 'manage' public dancing: Xinhua

After China escape, painful memories remain for blind activist

TECH SPACE
Army's role questioned in missing Mexican students case

Kenya's 'ivory kingpin' bail suspended

Rio airport agents bribed in Chinese immigrant scandal

All bets are off inside Laos' jungle sin city

TECH SPACE
China producer prices slump as Li warns of challenges

Bank of Russia keeps key rate unchanged

Change a heavy task in China's industrial heartland

China to step up fiscal incentives to boost growth




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.