Subscribe free to our newsletters via your




EARLY EARTH
Life in Earth's primordial sea was starved for sulfate
by Staff Writers
Vancouver, Canada (SPX) Nov 11, 2014


File image.

The Earth's ancient oceans held much lower concentrations of sulfate-a key biological nutrient-than previously recognized, according to research published this week in Science.

The findings paint a new portrait of our planet's early biosphere and primitive marine life. Organisms require sulfur as a nutrient, and it plays a central role in regulating atmospheric chemistry and global climate.

"Our findings are a fraction of previous estimates, and thousands of time lower than current seawater levels," says Sean Crowe, a lead author of the study and an assistant professor in the Departments of Microbiology and Immunology, and Earth, Ocean and Atmospheric Sciences at the University of British Columbia.

"At these trace amounts, sulfate would have been poorly mixed and short-lived in the oceans-and this sulfate scarcity would have shaped the nature, activity and evolution of early life on Earth."

UBC, University of Southern Denmark, CalTech, University of Minnesota Duluth, and University of Maryland researchers used new techniques and models to calibrate fingerprints of bacterial sulfur metabolisms in Lake Matano, Indonesia - a modern lake with chemistry similar to Earth's early oceans.

Measuring these fingerprints in rocks older than 2.5 billion years, they discovered sulfate 80 times lower than previously thought.

The more sensitive fingerprinting provides a powerful tool to search for sulfur metabolisms deep in Earth's history or on other planets like Mars.

Findings
Previous research has suggested that Archean sulfate levels were as low as 200 micromolar- concentrations at which sulfur would still have been abundantly available to early marine life.

The new results indicate levels were likely less than 2.5 micromolar, thousands of times lower than today.

What the researchers did
Researchers used state-of-the-art mass spectrometric approaches developed at California Institute of Technology to demonstrate that microorganisms fractionate sulfur isotopes at concentrations orders of magnitude lower than previously recognized.

They found that microbial sulfur metabolisms impart large fingerprints even when sulfate is scarce.

The team used the techniques on samples from Lake Matano, Indonesia-a sulfate-poor modern analogue for the Earth's Archean oceans.

"New measurements in these unique modern environments allow us to use numerical models to reconstruct ancient ocean chemistry with unprecedented resolution" says Sergei Katsev an Associate Professor at the Large Lakes Observatory, University of Minnesota Duluth.

Using models informed by sulfate isotope fractionation in Lake Matano, they established a new calibration for sulfate isotope fractionation that is extensible to the Earth's oceans throughout history. The researchers then reconstructed Archean seawater sulfate concentrations using these models and an exhaustive compilation of sulfur isotope data from Archean sedimentary rocks.

Crowe initiated the research while a post-doctoral fellow with Donald Canfield at the University of Southern Denmark.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of British Columbia
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Lack of oxygen delayed the rise of animals on Earth
New Haven CT (SPX) Nov 04, 2014
Geologists are letting the air out of a nagging mystery about the development of animal life on Earth. Scientists have long speculated as to why animal species didn't flourish sooner, once sufficient oxygen covered the Earth's surface. Animals began to prosper at the end of the Proterozoic period, about 800 million years ago - but what about the billion-year stretch before that, when most ... read more


EARLY EARTH
Trace amounts of radiation detected along U.S. West Coast

Tense G20 vows action on Ebola as climate returns to fore

Prayers, tears in Philippines one year after super typhoon

Fukushima construction workers hurt: operator

EARLY EARTH
Russia to place global navigation stations in China

Telit Introduces Jupiter SL871-S GPS Module

Galileo satellite set for new orbit

KVH Receives Order for Military Navigation Systems

EARLY EARTH
Did men evolve navigation skills to find mates?

Researchers explain high school cliques, how to prevent them

Sustainability and astrobiology combine to illuminate future Earth

Tell-tales of war: Traditional stories highlight how ancient women survived

EARLY EARTH
Returning bears pose dilemma in Europe

Intimidating chimpanzee males are more likely to become fathers

Switching on a dime: How plants function in shade and light

Environmental groups sue to protect Pacific walrus

EARLY EARTH
Ebola a stark reminder of link between humans, animals, environment

'Stupidity virus' discovered, scientists say

US scales back troop plans for Ebola fight in Liberia

Chinese medics in Liberia to beef up Ebola fight

EARLY EARTH
Myanmar hosts biggest cast of world leaders since reforms

China to punish Tibet officials who support Dalai Lama

Spanish gallery showcases Chinese dissident Ai Wei Wei's works

Hong Kong activists mull taking protest to Beijing

EARLY EARTH
EARLY EARTH
China cosies up to ASEAN with $20 billion in loans

Beijing denies blocking G20 corporate transparency talks

Australia poised to seize assets of corrupt Chinese: report

How Germany and the euro are keeping Europe in recession




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.