Subscribe free to our newsletters via your




CHIP TECH
NIST tightens the bounds on the quantum information 'speed limit'
by Staff Writers
Washington DC (SPX) Apr 15, 2015


The size of a quantum computer affects how quickly information can be distributed throughout it. The relation was thought to be logarithmic (blue). Progressively larger systems would need only a little more time. New findings suggest instead a power law relationship (red), meaning that the "speed limit" for quantum information transfer is far slower than previously believed. Image courtesy NIST. For a larger version of this image please go here.

If you're designing a new computer, you want it to solve problems as fast as possible. Just how fast is possible is an open question when it comes to quantum computers, but physicists at the National Institute of Standards and Technology (NIST) have narrowed the theoretical limits for where that "speed limit" is. The research implies that quantum processors will work more slowly than some research has suggested.*

The work offers a better description of how quickly information can travel within a system built of quantum particles such as a group of individual atoms. Engineers will need to know this to build quantum computers, which will have vastly different designs and be able to solve certain problems much more easily than the computers of today.

While the new finding does not give an exact speed for how fast information will be able to travel in these as-yet-unbuilt computers - a longstanding question - it does place a far tighter constraint on where this speed limit could be.

Quantum computers will store data in a particle's quantum states - one of which is its spin, the property that confers magnetism. A quantum processor could suspend many particles in space in close proximity, and computing would involve moving data from particle to particle. Just as one magnet affects another, the spin of one particle influences its neighbor's, making quantum data transfer possible, but a big question is just how fast this influence can work.

The NIST team's findings advance a line of research that stretches back to the 1970s, when scientists discovered a limit on how quickly information could travel if a suspended particle only could communicate directly with its next-door neighbors.

Since then, technology advanced to the point where scientists could investigate whether a particle might directly influence others that are more distant, a potential advantage. By 2005, theoretical studies incorporating this idea had increased the speed limit dramatically.

"Those results implied a quantum computer might be able to operate really fast, much faster than anyone had thought possible," says NIST's Michael Foss-Feig. "But over the next decade, no one saw any evidence that the information could actually travel that quickly."

Physicists exploring this aspect of the quantum world often line up several particles and watch how fast changing the spin of the first particle affects the one farthest down the line - a bit like standing up a row of dominoes and knocking the first one down to see how fast the chain reaction takes.

The team looked at years of others' research and, because the dominoes never seemed to fall as fast as the 2005 prediction suggested, they developed a new mathematical proof that reveals a much tighter limit on how fast quantum information can propagate.

"The tighter a constraint we have, the better, because it means we'll have more realistic expectations of what quantum computers can do," says Foss-Feig. The limit, their proof indicates, is far closer to the speed limits suggested by the 1970s result.

The proof addresses the rate at which entanglement propagates across quantum systems. Entanglement - the weird linkage of quantum information between two distant particles - is important, because the more quickly particles grow entangled with one another, the faster they can share data.

The 2005 results indicated that even if the interaction strength decays quickly with distance, as a system grows, the time needed for entanglement to propagate through it grows only logarithmically with its size, implying that a system could get entangled very quickly.

The team's work, however, shows that propagation time grows as a power of its size, meaning that while quantum computers may be able to solve problems that ordinary computers find devilishly complex, their processors will not be speed demons.

"On the other hand, the findings tell us something important about how entanglement works," says Foss-Feig. "They could help us understand how to model quantum systems more efficiently."

* M. Foss-Feig, Z.-X. Gong, C.W. Clark and A.V. Gorshkov. Nearly linear light cones in long-range interacting quantum systems. Phys. Rev. Letters, April 13, 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Computers that mimic the function of the brain
Chicago IL (SPX) Apr 10, 2015
Researchers are always searching for improved technologies, but the most efficient computer possible already exists. It can learn and adapt without needing to be programmed or updated. It has nearly limitless memory, is difficult to crash, and works at extremely fast speeds. It's not a Mac or a PC; it's the human brain. And scientists around the world want to mimic its abilities. Both acad ... read more


CHIP TECH
Honeywell emergency signal tracking system passes testing

Aid agencies ready for Yemeni refugee influx in Horn of Africa

Chemical plant blast, anti-pollution protest in China

Radiation from Fukushima detected off Canada west coast

CHIP TECH
China to launch three or four more BeiDou satellites this year

Two new satellites join the Galileo constellation

China launches upgraded satellite for independent SatNav system

India Launches Fourth Satellite in Effort to Develop Own Navigation System

CHIP TECH
Ancient human fossils from Laos reveal early diversity

The rest of the brain gets in the way

If your kid hates school, it just may be their genes

'Little Foot' 3.67 million years old

CHIP TECH
Ecological flash mobs

Study details animals' ability to adapt to cold snaps

Florida takes aim at cat-eating African lizards

Lizards are larger and retain heat longer in high-altitude habitats

CHIP TECH
Inkjet could produce tool to identify infectious diseases

Complex bacterial challenge in fight against deadly amphibian disease

Designer molecule lowers HIV levels: trial results

Meningitis epidemic kills 45 in Niger

CHIP TECH
China to 'blacklist' its unruly tourists: report

Parents in last minute plea for release of China feminists

China TV host suspended over insulting Mao

Let the red flag fly over Tibet monasteries: Communist chief

CHIP TECH
Sagem-led consortium intoduces anti-piracy system

CHIP TECH
Japan's ruling camp wins local polls in 'Abenomics' litmus test

China March consumer inflation steady at 1.4%: govt

Russia mulls credit autonomy

China sees first default on bond principal




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.