Subscribe free to our newsletters via your




TIME AND SPACE
New window on the early universe
by Staff Writers
Bonn, Germany (SPX) Oct 24, 2014


The result of the simulation: the image on the right shows the simulated hydrogen distribution. Image courtesy Matteo Tomassetti, University of Bonn.

Using two world-class supercomputers, the researchers were able to demonstrate the effectiveness of their approach by simulating the formation of a massive galaxy at the dawn of cosmic time. The ALMA radio telescope - which stands at an elevation of 5,000 meters in the Atacama Desert of Chile, one of the driest places on earth - was then used to forge observations of the galaxy, showing how their method improves upon previous efforts.

It is extremely difficult to gather information about galaxies at the edge of the Universe: the signals from these heavenly bodies "dilute" in the course of their billion-year journey through space toward earth, making them difficult observational targets.

Estimating how much molecular hydrogen is present in these galaxies is particularly challenging: the molecule emits almost no radiation. Nevertheless, Astrophysicists are keen to map the abundance of this element: molecular hydrogen is the fundamental building block for new stars; the more of it contained within a particular galaxy, the more stars that galaxy can form.

The carbon trick
Currently, astrophysicists make use of a trick to determine the abundance of molecular hydrogen in a galaxy: they first measure the amount of carbon monoxide - which emits far more light than molecular hydrogen - and then "convert" the carbon monoxide signal to an abundance of molecular hydrogen using a complex procedure. This method, however, is imprecise and prone to error.

"We were able to show that the radiation of neutral carbon is much better suited to observe very distant galaxies", says Dr. Padelis Papadopoulos from the University of Cardiff.

"The measured values allow for a very precise estimation of how much molecular hydrogen is present." Unfortunately, the radiation from neutral carbon is almost entirely absorbed by water vapor in the earth's atmosphere, which acts similar to a pair of dark sunglasses when observing the carbon signal.

However, a new radio telescope in the Chilean Atacama Desert, the Atacama Large Millimeter/submillimeter Array (or ALMA), is designed with these limitations in mind. There, at an elevation of 5,000 meters, the conditions are so extremely dry that the telescope can easily pick up the interstellar radiation from carbon atoms.

Looking back 12 billion years into the past
"According to our calculations, ALMA can detect these distant galaxies, the signals of which have been traveling to us for more than 12 billion years", says Matteo Tomassetti, doctoral student of the University of Bonn and lead author of the publication.

"Even more importantly: for the first time we are able to precisely determine how much molecular hydrogen is present in these galaxies."

The University of Bonn astrophysicist Professor Cristiano Porciani speaks of a new window to the early universe. "Our theoretical work will have an important impact on observational astronomy", he emphasizes. "It will help us to better understand the mysterious origin of the galaxies."

To carry out their work, the team was awarded resources on two world-class super-computers -- HeCTOR at the University of Edinburgh and Abel at the University of Oslo -- which were made available through a European computing cooperative known as PRACE (Partnership for Advanced Computing in Europe).

The study was supported and funded by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the special research area 956, as well as by the International Max Planck Research School.

M. Tomassetti, C. Porciani, E. Romano-Diaz, A. D. Ludlow, P. P. Papadopoulos: Atomic carbon as a powerful tracer of molecular gas in the high-redshift Universe: perspectives for ALMA; MNRAS Letters; doi: 10/193/mnras/slu137


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Bonn
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
POLARBEAR detects B-modes in the cosmic microwave background
San Diego CA (SPX) Oct 23, 2014
Cosmologists have made the most sensitive and precise measurements yet of the polarization of the cosmic microwave background. The report, published in the Astrophysical Journal, marks an early success for POLARBEAR, a collaboration of more than 70 scientists using a telescope high in Chile's Atacama desert designed to capture the universe's oldest light. "It's a really important milestone ... read more


TIME AND SPACE
British police pay mother of spy's child

Philippines' Aquino criticises typhoon rebuilding delays

Natural disasters killed over 22,000 in 2013: Red Cross

Rescuers airlift 154 to safety after deadly Nepal storm

TIME AND SPACE
Russian Bank Offers 5 Billion Rubles for GLONASS

Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

ISRO to Launch India's Third Navigation Satellite on October 16

TIME AND SPACE
Death and social media: what happens next

Highest altitude ice age human occupation documented in Peruvian Andes

Parts of UK 'under siege' from immigration: defence minister

Reducing population is no environmental quick fix

TIME AND SPACE
How ferns adapted to one of Earth's newest and most extreme environments

Florida lizards evolve rapidly, within 15 years and 20 generations

Study uses DNA sequences to look back in time at plant evolution

Using microscopic bugs to save the bees

TIME AND SPACE
New commander takes over US Ebola mission in West Africa

Visiting US envoy condemns response to Ebola epidemic

Evolutionary roots of Ebola more ancient than previously thought

Is there a way out of the Ebola epidemic

TIME AND SPACE
China plans to scrap death penalty for 9 crimes: Xinhua

Cultural Revolution evoked with China mass sentencing

UN rights chief says in talks with China on Tibet visit

China's Xi echoes Mao on the arts: state media

TIME AND SPACE
Hijacked Singaporean ship released near Nigeria: Seoul

TIME AND SPACE
Firm in China's first bond default to be restructured

China economic growth falls to five-year low of 7.3%: govt

Australia poised to seize assets of corrupt Chinese: report

How Germany and the euro are keeping Europe in recession




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.