Subscribe free to our newsletters via your




TECH SPACE
ORNL makes first observation of atoms moving inside bulk material
by Staff Writers
Oak Ridge TN (SPX) Oct 17, 2014


Selected frames from a sequence of scanning transmission electron microscope images showing the diffusion pathway of a Ce dopant (the bright atom highlighted with a white arrow) as it moves inside a bulk AlN crystal. The final frame overlays the Ce pathway on the Z-contrast image obtained by averaging each frame.

Researchers at the Department of Energy's Oak Ridge National Laboratory have obtained the first direct observations of atomic diffusion inside a bulk material. The research, which could be used to give unprecedented insight into the lifespan and properties of new materials, is published in the journal Physical Review Letters.

"This is the first time that anyone has directly imaged single dopant atoms moving around inside a material," said Rohan Mishra of Vanderbilt University who is also a visiting scientist in ORNL's Materials Science and Technology Division.

Semiconductors, which form the basis of modern electronics, are "doped" by adding a small number of impure atoms to tune their properties for specific applications. The study of the dopant atoms and how they move or "diffuse" inside a host lattice is a fundamental issue in materials research.

Traditionally, diffusion of atoms has been studied through indirect macroscopic methods or through theoretical calculations. Diffusion of single atoms has previously been directly observed only on the surface of materials.

The experiment also allowed the researchers to test a surprising prediction: Theory-based calculations for dopant motion in aluminum nitride predicted faster diffusion for cerium atoms than for manganese atoms. This prediction is surprising as cerium atoms are larger than manganese atoms.

"It's completely counterintuitive that a bigger, heavier atom would move faster than a smaller, lighter atom," said the Material Science and Technology Division's Andrew Lupini, a coauthor of the paper.

In the study, the researchers used a scanning transmission electron microscope to observe the diffusion processes of cerium and manganese dopant atoms. The images they captured showed that the larger cerium atoms readily diffused through the material, while the smaller manganese atoms remained fixed in place.

The team's work could be directly applied in basic material design and technologies such as energy-saving LED lights where dopants can affect color and atom movement can determine the failure modes.

"Diffusion governs how dopants get inside a material and how they move," said Lupini. "Our study gives a strategy for choosing which dopants will lead to a longer device lifetime."

See videos of manganese and cerium atom dopant jumps.

This research was conducted in part at ORNL and Lawrence Berkeley National Laboratory's National Energy Research Scientific Computing Center, a DOE Office of Science User Facility.

The study was funded by the DOE Office of Science, the Australian Research Council, Vanderbilt University and the Japan Society for the Promotion of Science Postdoctoral Fellowship for research abroad.

.


Related Links
Oak Ridge National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Unstoppable magnetoresistance
Princeton NJ (SPX) Oct 10, 2014
Mazhar Ali, a fifth-year graduate student in the laboratory of Bob Cava, the Russell Wellman Moore Professor of Chemistry at Princeton University, has spent his academic career discovering new superconductors, materials coveted for their ability to let electrons flow without resistance. While testing his latest candidate, the semimetal tungsten ditelluride (WTe2), he noticed a peculiar result. ... read more


TECH SPACE
Natural disasters killed over 22,000 in 2013: Red Cross

Rescuers airlift 154 to safety after deadly Nepal storm

Glitzy Russian TV drama brings Chernobyl to new generation

Chobani yogurt founder gives $2mn for Syria/Iraq refugees

TECH SPACE
Russian Bank Offers 5 Billion Rubles for GLONASS

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

Galileo duo handed over in excellent shape

ISRO to Launch India's Third Navigation Satellite on October 16

TECH SPACE
Cadavers beat computers for learning anatomy

Europeans lactose intolerant for 5,000 years after agriculture began

Autism autism evolved recently in human history

Graphene sensors provide insights into brain structure and function

TECH SPACE
WSU researchers see how plants optimize their repair

Crystallizing the DNA nanotechnology dream

Let There Be Light

High-speed evolution in the lab powers genome analysis

TECH SPACE
'Pioneers': the Spanish medics fighting Ebola in Europe

At least four months to contain Ebola: Red Cross chief

'Every nation' must help in fight against Ebola: Liberia

Ashoka Mukpo could be released within week

TECH SPACE
UN rights chief says in talks with China on Tibet visit

China's Xi echoes Mao on the arts: state media

China crab industry feels pinch from graft crackdown

China 'cult' members sentenced to death for McDonald's killing

TECH SPACE
Hijacked Singaporean ship released near Nigeria: Seoul

TECH SPACE
APEC finance chiefs see 'downside risks' to global economy

Australia poised to seize assets of corrupt Chinese: report

How Germany and the euro are keeping Europe in recession

Shaky Japanese economy hit by growing trade deficit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.