Subscribe free to our newsletters via your




CHIP TECH
One step closer to a single-molecule device
by Staff Writers
New York NY (SPX) May 28, 2015


Current coral bleaching.

Under the direction of Latha Venkataraman, associate professor of applied physics at Columbia Engineering, researchers have designed a new technique to create a single-molecule diode, and, in doing so, they have developed molecular diodes that perform 50 times better than all prior designs. Venkataraman's group is the first to develop a single-molecule diode that may have real-world technological applications for nanoscale devices.

"Our new approach created a single-molecule diode that has a high (>250) rectification and a high "on" current (~ 0.1 micro Amps)," says Venkataraman. "Constructing a device where the active elements are only a single molecule has long been a tantalizing dream in nanoscience. This goal, which has been the 'holy grail' of molecular electronics ever since its inception with Aviram and Ratner's 1974 seminal paper, represents the ultimate in functional miniaturization that can be achieved for an electronic device."

With electronic devices becoming smaller every day, the field of molecular electronics has become ever more critical in solving the problem of further miniaturization, and single molecules represent the limit of miniaturization. The idea of creating a single-molecule diode was suggested by Arieh Aviram and Mark Ratner who theorized in 1974 that a molecule could act as a rectifier, a one-way conductor of electric current.

Researchers have since been exploring the charge-transport properties of molecules. They have shown that single-molecules attached to metal electrodes (single-molecule junctions) can be made to act as a variety of circuit elements, including resistors, switches, transistors, and, indeed, diodes. They have learned that it is possible to see quantum mechanical effects, such as interference, manifest in the conductance properties of molecular junctions.

Since a diode acts as an electricity valve, its structure needs to be asymmetric so that electricity flowing in one direction experiences a different environment than electricity flowing in the other direction. In order to develop a single-molecule diode, researchers have simply designed molecules that have asymmetric structures.

"While such asymmetric molecules do indeed display some diode-like properties, they are not effective," explains Brian Capozzi, a PhD student working with Venkataraman and lead author of the paper.

"A well-designed diode should only allow current to flow in one direction--the 'on' direction--and it should allow a lot of current to flow in that direction. Asymmetric molecular designs have typically suffered from very low current flow in both 'on' and 'off' directions, and the ratio of current flow in the two has typically been low. Ideally, the ratio of 'on' current to 'off' current, the rectification ratio, should be very high."

In order to overcome the issues associated with asymmetric molecular design, Venkataraman and her colleagues--Chemistry Assistant Professor Luis Campos' group at Columbia and Jeffrey Neaton's group at the Molecular Foundry at UC Berkeley--focused on developing an asymmetry in the environment around the molecular junction. They created an environmental asymmetry through a rather simple method--they surrounded the active molecule with an ionic solution and used gold metal electrodes of different sizes to contact the molecule.

Their results achieved rectification ratios as high as 250: 50 times higher than earlier designs. The "on" current flow in their devices can be more than 0.1 microamps, which, Venkataraman notes, is a lot of current to be passing through a single-molecule. And, because this new technique is so easily implemented, it can be applied to all nanoscale devices of all types, including those that are made with graphene electrodes.

"It's amazing to be able to design a molecular circuit, using concepts from chemistry and physics, and have it do something functional," Venkataraman says. "The length scale is so small that quantum mechanical effects are absolutely a crucial aspect of the device. So it is truly a triumph to be able to create something that you will never be able to physically see and that behaves as intended."

She and her team are now working on understanding the fundamental physics behind their discovery, and trying to increase the rectification ratios they observed, using new molecular systems.

The paper, "Single-Molecule Diodes with High On-Off Ratios through Environmental Control," was published May 25 in Nature Nanotechnology.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Columbia University School of Engineering and Applied Science
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Mission possible: This device will self-destruct when heated
Champaign IL (SPX) May 25, 2015
Where do electronics go when they die? Most devices are laid to eternal rest in landfills. But what if they just dissolved away, or broke down to their molecular components so that the material could be recycled? University of Illinois researchers have developed heat-triggered self-destructing electronic devices, a step toward greatly reducing electronic waste and boosting sustainability i ... read more


CHIP TECH
Angry China families demand access to boat disaster

Rescuers race against clock to find survivors of China ship

MH370 search will not be expanded further: Australia

Rescuers cut Chinese ship's hull in search for survivors

CHIP TECH
GLONASS to Go on Stream in 2015

Satellites make a load of difference to bridge safety

Advanced Navigation Releases Interface and Logging Unit

Raytheon delivers hardware for next-gen USAF GPS system

CHIP TECH
Greenery on city rooftops can boost concentration levels

New human ancestor species from Ethiopia lived alongside Lucy's species

Lethal wounds on skull may indicate 430,000-year-old murder

The Bronze Age Egtved Girl was not from Denmark

CHIP TECH
An evolutionary heads-up

Birds 'weigh' peanuts and choose heavier ones

Study tackles evolution mystery of animal, plant warning cues for survival

Genetic maps help conservation managers maintain healthy bears

CHIP TECH
US military confirms more anthrax blunders

Live anthrax sent to Australia: US officials

Why you need one vaccine for measles and many for the flu

Total of 77 people had contact with MERS patient: China

CHIP TECH
China's miniature homemakers cut down to size

Far from the madding crowd: China's rich seek own islands

China's new tech giants show old bias with porn stars

Who you gonna call? Beijing smokebusters to go on patrol

CHIP TECH
Polish bootcamp trains security contractors for mission impossible

A blast and gunfire: Mexico's chopper battle

CHIP TECH
China manufacturing index at six-month high but strains remain

Bernanke blames Congress as China flexes economic muscles

China bottle maker declares default on $100 mn bonds

Taiwan lowers growth forecast in face of rival China




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.