Subscribe free to our newsletters via your




SOLAR DAILY
One step to solar-cell efficiency
by Staff Writers
Houston TX (SPX) Jun 20, 2014


Rice University scientists have reduced to one step the process to turn silicon wafers into the black silicon used in solar cells. The advance could cut costs associated with the production of solar cells. Here, a top-down view shows pyramid-shaped pores etched into silicon over eight hours. Image courtesy Barron Group and Rice University.

Rice University scientists have created a one-step process for producing highly efficient materials that let the maximum amount of sunlight reach a solar cell.

The Rice lab of chemist Andrew Barron found a simple way to etch nanoscale spikes into silicon that allows more than 99 percent of sunlight to reach the cells' active elements, where it can be turned into electricity.

The research by Barron and Rice graduate student and lead author Yen-Tien Lu appears in the Royal Society of Chemistry's Journal of Materials Chemistry A.

The more light absorbed by a solar panel's active elements, the more power it will produce. But the light has to get there. Coatings in current use that protect the active elements let most light pass but reflect some as well. Various strategies have cut reflectance down to about 6 percent, Barron said, but the anti-reflection is limited to a specific range of light, incident angle and wavelength.

Enter black silicon, so named because it reflects almost no light. Black silicon is simply silicon with a highly textured surface of nanoscale spikes or pores that are smaller than the wavelength of light. The texture allows the efficient collection of light from any angle - from sunrise to sunset.

Barron and Lu have replaced a two-step process that involved metal deposition and electroless chemical etching with a single step that works at room temperature.

The chemical stew that makes it possible is a mix of copper nitrate, phosphorous acid, hydrogen fluoride and water. When applied to a silicon wafer, the phosphorous acid reduces the copper ions to copper nanoparticles. The nanoparticles attract electrons from the silicon wafer's surface, oxidizing it and allowing hydrogen fluoride to burn inverted pyramid-shaped nanopores into the silicon.

Fine-tuning the process resulted in a black silicon layer with pores as small as 590 nanometers (billionths of a meter) that let through more than 99 percent of light. (By comparison, a clean, un-etched silicon wafer reflects nearly 100 percent of light.)

Barron said the spikes would still require a coating to protect them from the elements, and his lab is working on ways to shorten the eight-hour process needed to perform the etching in the lab. But the ease of creating black silicon in one step makes it far more practical than previous methods, he said.

Barron is Rice's Charles W. Duncan Jr.-Welch Professor of Chemistry and a professor of materials science and nanoengineering. Natcore Technology Inc., the Robert A. Welch Foundation and the Welsh Government Ser Cymru Program supported the research.

.


Related Links
Rice University
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Collecting light with artificial moth eyes
Dusseldorf, Germany (SPX) Jun 20, 2014
All over the world researchers are investigating solar cells which imitate plant photosynthesis, using sunlight and water to create synthetic fuels such as hydrogen. Empa researchers have developed such a photoelectrochemical cell, recreating a moth's eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials - iron and tungsten oxide. Rust - iron ... read more


SOLAR DAILY
Japan satellites to monitor Fukushima, Chernobyl

Fukushima struggling to build ice wall to plug leak

100 days after MH370, Malaysia vows to keep searching

With China as guest, G77 summit seeks new development pledges

SOLAR DAILY
Soyuz Rocket puts Russian GLONASS-M navigation satellite into orbit

Russia may join forces with China to compete with US, European satnavs

Russia Says GLONASS Accuracy Could Be Boosted to Two Feet

Northrop Grumman tapped for new miniature navigation system

SOLAR DAILY
Inca trails, ancient French cave vie for World Heritage status

Serious challenges to 'New Urbanist' communities

Seafarers brought Neolithic culture to Europe, gene study indicates

New paper amplifies hypothesis on human language's deep origins

SOLAR DAILY
Wolves in wolves' clothing not all the same

Making new species without sex

Going inside an ant raft

Satao, Kenya's beloved elephant, slaughtered by ivory poachers

SOLAR DAILY
HIV battle: Uganda tests out rubber band circumcision

Key genes for Spanish flu pandemic exist in nature: report

Deadly diseases overlooked for too long

Ugandan HIV bill 'nonsensical', says health body

SOLAR DAILY
Construction stopped on replica of ancient Chinese ship

China sentences three to death for Tiananmen attack: CCTV

Police arrest 21 in Hong Kong new town protest

China official probed for 'disciplinary violations': media

SOLAR DAILY
Malaysian navy foils pirate attack in South China Sea

NATO anti-piracy ops until 2016

Kidnapped Chinese, Filippino rescued in Malaysia

Chinese worker kidnapped in Malaysia's Borneo island

SOLAR DAILY
Bank of China approved for yuan clearing in Frankfurt

China's shipping veto changes world competition landscape

Chinese putting wind in sails of Greek recovery

China group used same metal stocks to borrow $2.5 bn: report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.