Subscribe free to our newsletters via your




NANO TECH
Peptoid Nanosheets at the Oil/Water Interface
by Staff Writers
Berkeley CA (SPX) Sep 12, 2014


Peptoid nanosheets are among the largest and thinnest free-floating organic crystals ever made, with an area-to-thickness equivalent of a plastic sheet covering a football field. Peptoid nanosheets can be engineered to carry out a wide variety of functions.

From the people who brought us peptoid nanosheets that form at the interface between air and water, now come peptoid nanosheets that form at the interface between oil and water. Scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed peptoid nanosheets - two-dimensional biomimetic materials with customizable properties - that self-assemble at an oil-water interface.

This new development opens the door to designing peptoid nanosheets of increasing structural complexity and chemical functionality for a broad range of applications, including improved chemical sensors and separators, and safer, more effective drug delivery vehicles.

"Supramolecular assembly at an oil-water interface is an effective way to produce 2D nanomaterials from peptoids because that interface helps pre-organize the peptoid chains to facilitate their self-interaction," says Ron Zuckermann, a senior scientist at the Molecular Foundry, a DOE nanoscience center hosted at Berkeley Lab.

"This increased understanding of the peptoid assembly mechanism should enable us to scale-up to produce large quantities, or scale- down to screen many different nanosheets for novel functions."

Zuckermann, who directs the Molecular Foundry's Biological Nanostructures Facility, and Geraldine Richmond of the University of Oregon are the corresponding authors of a paper reporting these results in the Proceedings of the National Academy of Sciences (PNAS).

The paper is titled "Assembly and molecular order of two-dimensional peptoid nanosheets at the oil-water interface." Co-authors are Ellen Robertson, Gloria Olivier, Menglu Qian and Caroline Proulx.

Peptoids are synthetic versions of proteins. Like their natural counterparts, peptoids fold and twist into distinct conformations that enable them to carry out a wide variety of specific functions. In 2010, Zuckermann and his group at the Molecular Foundry discovered a technique to synthesize peptoids into sheets that were just a few nanometers thick but up to 100 micrometers in length.

These were among the largest and thinnest free-floating organic crystals ever made, with an area-to-thickness equivalent of a plastic sheet covering a football field. Just as the properties of peptoids can be chemically customized through robotic synthesis, the properties of peptoid nanosheets can also be engineered for specific functions.

"Peptoid nanosheet properties can be tailored with great precision," Zuckermann says, "and since peptoids are less vulnerable to chemical or metabolic breakdown than proteins, they are a highly promising platform for self-assembling bio-inspired nanomaterials."

In this latest effort, Zuckermann, Richmond and their co-authors used vibrational sum frequency spectroscopy to probe the molecular interactions between the peptoids as they assembled at the oil-water interface. These measurements revealed that peptoid polymers adsorbed to the interface are highly ordered, and that this order is greatly influenced by interactions between neighboring molecules.

"We can literally see the polymer chains become more organized the closer they get to one another," Zuckermann says.

The substitution of oil in place of air creates a raft of new opportunities for the engineering and production of peptoid nanosheets. For example, the oil phase could contain chemical reagents, serve to minimize evaporation of the aqueous phase, or enable microfluidic production.

"The production of peptoid nanosheets in microfluidic devices means that we should soon be able to make combinatorial libraries of different functionalized nanosheets and screen them on a very small scale," Zuckermann says.

"This would be advantageous in the search for peptoid nanosheets with the molecular recognition and catalytic functions of proteins." Zuckermann and his group at the Molecular Foundry are now investigating the addition of chemical reagents or cargo to the oil phase, and exploring their interactions with the peptoid monolayers that form during the nanosheet assembly process. "In the future we may be able to produce nanosheets with drugs, dyes, nanoparticles or other solutes trapped in the interior," he says.

"These new nanosheets could have a host of interesting biomedical, mechanical and optical properties." This work was primarily funded by the DOE Office of Science and the Defense Threat Reduction Agency. Part of the research was performed at the Molecular Foundry and the Advanced Light Source, which are DOE Office of Science User Facilities.

.


Related Links
Lawrence Berkeley National Laboratory (Berkeley Lab)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique
Eugene OR (SPX) Sep 04, 2014
Scientists, including University of Oregon chemist Geraldine Richmond, have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological mechanisms and processes. The accomplishment - detailed this week in a paper placed online ahead of print by the Proceedings of the National Academy of Sciences - is expected to ... read more


NANO TECH
At least 17 dead as flood rescue boat capsizes in Pakistan

Shikaras to the rescue on Kashmir's flooded paradise

Fresh rain hampers rescue bid in flood-ravaged Kashmir

Dutch say need to know MH17 missile launch site to prosecute

NANO TECH
Thales to improve GPS satellite navigation system

Exelis boasts of its GPS signal interference product

Lockheed Martin-Built gps IIR/IIR-M satellites reach 200 years of combined operational life

Australia approves GPS project

NANO TECH
Non-dominant hand vital to the evolution of the thumb

Study ties groundwater to human evolution

Evolutionary tools improve prospects for sustainable development

Chinese doctors discover woman missing cerebellum

NANO TECH
Leopard poop reveals dogs to be cats' favorite meal in India

Bangladesh meet begins to save endangered tigers

US cityscapes show consistent patterns of 'urban evolution'

Brazil's Pantanal: paradise needing protection

NANO TECH
In US, calls mount for major scale-up to Ebola crisis

New defence mechanism against viruses discovered

The Search for Ebola Immune Response Targets

New approaches for Ebola virus therapeutics

NANO TECH
China's Xi starts South Asia tour in "paradise"

Chinese activist's trial postponed as lawyers protest

Mother of Briton murdered in China renews compensation call

Dog 'cleaned' in washing machine sparks anger in Hong Kong

NANO TECH
Hijacked Singaporean ship released near Nigeria: Seoul

Chinese fish farmer freed after Malaysia kidnapping

US begins 'unprecedented' auction of Silk Road bitcoins

Malaysian navy foils pirate attack in South China Sea

NANO TECH
Chinese output growth slows to five-year low in August

China August inflation eases to 2.0% on-year: govt

Chinese premier vows to punish corporate lawbreakers

China's promised reforms moving too slowly: EU businesses




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.