Subscribe free to our newsletters via your




EXO LIFE
Planet-forming Lifeline Discovered in a Binary Star System
by Staff Writers
Paris (SPX) Oct 31, 2014


This artist's impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets. Image courtesy ESO/L. Calcada

For the first time, researchers using ALMA have detected a streamer of gas flowing from a massive outer disc toward the inner reaches of a binary star system. This never-before-seen feature may be responsible for sustaining a second, smaller disc of planet-forming material that otherwise would have disappeared long ago.

Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets. The results are published in the journal Nature on 30 October 2014.

A research group led by Anne Dutrey from the Laboratory of Astrophysics of Bordeaux, France and CNRS used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the distribution of dust and gas in a multiple-star system called GG Tau-A [1]. This object is only a few million years old and lies about 450 light-years from Earth in the constellation of Taurus (The Bull).

Like a wheel in a wheel, GG Tau-A contains a large, outer disc encircling the entire system as well as an inner disc around the main central star. This second inner disc has a mass roughly equivalent to that of Jupiter. Its presence has been an intriguing mystery for astronomers since it is losing material to its central star at a rate that should have depleted it long ago.

While observing these structures with ALMA, the team made the exciting discovery of gas clumps in the region between the two discs. The new observations suggest that material is being transferred from the outer to the inner disc, creating a sustaining lifeline between the two [2].

"Material flowing through the cavity was predicted by computer simulations but has not been imaged before. Detecting these clumps indicates that material is moving between the discs, allowing one to feed off the other," explains Dutrey.

"These observations demonstrate that material from the outer disc can sustain the inner disc for a long time. This has major consequences for potential planet formation."

Planets are born from the material left over from star birth. This is a slow process, meaning that an enduring disc is a prerequisite for planet formation. If the feeding process into the inner disc now seen with ALMA occurs in other multiple-star systems the findings introduce a vast number of new potential locations to find exoplanets in the future.

The first phase of exoplanet searches was directed at single-host stars like the Sun [3]. More recently it has been shown that a large fraction of giant planets orbit binary-star systems.

Now, researchers have begun to take an even closer look and investigate the possibility of planets orbiting the individual stars of multiple-star systems. The new discovery supports the possible existence of such planets, giving exoplanet discoverers new happy hunting grounds.

Emmanuel Di Folco, co-author of the paper, concludes: "Almost half the Sun-like stars were born in binary systems. This means that we have found a mechanism to sustain planet formation that applies to a significant number of stars in the Milky Way. Our observations are a big step forward in truly understanding planet formation."

Notes
[1] GG Tau-A is part of a more complex multiple-star system called GG Tauri. Recent observations of GG Tau-A using the VLTI have revealed that one of the stars - GG Tau Ab, the one not surrounded by a disc - is itself a close binary, consisting of GG Tau-Ab1 and GG Tau-Ab2. This introduced a fifth component to the GG Tau system.

[2] An earlier result with ALMA showed an example of a single star with material flowing inwards from the outer part of its disc.

[3] Because orbits in binary stars are more complex and less stable, it was believed that forming planets in these systems would be more challenging than around single stars.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Atacama Large Millimeter/submillimeter Array (ALMA)
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO LIFE
Microbes in deep-sea rocks eat methane, lots of it
Pasadena, Calif. (UPI) Oct 16, 2014
Most methane is buried deep in the ground. Some of it, however, bubbles up to escape, and that's good news for methane-loving microbes living in rocks that gather along the ocean's floor near methane sea vents, munching away on the colorless, odorless assembly of hydrocarbons. The rocks host microbes that love a good methane buffet, especially one that goes bubbling by at all hours of t ... read more


EXO LIFE
British police pay mother of spy's child

Philippines' Aquino criticises typhoon rebuilding delays

Natural disasters killed over 22,000 in 2013: Red Cross

Rescuers airlift 154 to safety after deadly Nepal storm

EXO LIFE
No Galileo nav-sat launch for December - Arianespace

Russian Bank Offers 5 Billion Rubles for GLONASS

Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

EXO LIFE
Free urban data - what's it good for?

Urban seismic network detects human sounds

Death and social media: what happens next

Parts of UK 'under siege' from immigration: defence minister

EXO LIFE
Evolution of competitiveness

Study uses DNA sequences to look back in time at plant evolution

Scientists make enzyme that could help explain origins of life

Giant Galapagos tortoises are making a comeback

EXO LIFE
TB-diabetes co-epidemic looms, experts warn

US orders quarantine for troops leaving W.Africa

Visiting US envoy condemns response to Ebola epidemic

Evolutionary roots of Ebola more ancient than previously thought

EXO LIFE
China plans to scrap death penalty for 9 crimes: Xinhua

Cultural Revolution evoked with China mass sentencing

UN rights chief says in talks with China on Tibet visit

China's Xi echoes Mao on the arts: state media

EXO LIFE
Hijacked Singaporean ship released near Nigeria: Seoul

EXO LIFE
Firm in China's first bond default to be restructured

Japan factory output posts surprise jump but recovery unclear

China economic growth falls to five-year low of 7.3%: govt

Australia poised to seize assets of corrupt Chinese: report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.