Subscribe free to our newsletters via your




WATER WORLD
Plump turtles swim better: First models of swimming animals
by Staff Writers
Madison WI (SPX) Oct 30, 2014


Scientists studied newborn leatherback sea turtles to create the first models of a swimming animal. Challenges to measuring forces like drag and thrust made this difficult before, but the research team overcame these, offering the opportunity for many more to benefit from their findings. Image courtesy of Jeanette Wyneken, Florida Atlantic University.

Bigger is better, if you're a leatherback sea turtle. For the first time, researchers at the University of Wisconsin-Madison, Florida Atlantic University (FAU), and the National Oceanic and Atmospheric Administration (NOAA) have measured the forces that act on a swimming animal and the energy the animal must expend to move through the water.

A surprising finding: Longer, slender turtles are less efficient swimmers than more rotund turtles, which get better stroke for their buck.

By taking these measurements, the research team - led by UW-Madison's Warren Porter - built models of swimming turtles and, in doing so, have enabled others to "compute the energetics, behavior and distributions of a species anywhere on Earth now or in the future," says Porter, a professor of zoology. The findings are published in the journal PLOS One.

As climate change shifts the habitable ranges of both land and sea animals, and as scientists and others try to reconstruct ancient habitats of long-ago species, the ability to assess and predict an animal's physical interactions with the environment is key. The researchers see their work as instrumental for everyone from land managers to paleoecologists, students and conservationists.

"If you've got mechanistic models, then whatever kind of scenarios you want to run for the environment, you can run these models and have a lot of confidence that they're giving you good numbers," says Porter, who previously developed a model for land animals.

But getting there wasn't easy.

Several labs have tried to model the movements of animals in water but "swimming animals are very, very difficult to measure experimentally," Porter says. "It's very difficult to get drag and thrust."

No one before had been able to measure the fluid dynamics of a swimming creature, or the energetics required to perform the work of moving through water. This allows scientists to measure critical aspects of biology, such as how much food an animal must eat to survive.

It was serendipity that connected Porter and the lead author of the study, Peter Dudley, a former graduate student in Porter's lab, to the scientists at FAU who would eventually help solve the problem.

Jeanette Wyneken, FAU professor of biological sciences, had developed methods to keep newborn leatherback sea turtles in the lab for study. She and her former students created a tether system that allows the turtles to swim freely while also staying safe; the turtles don't recognize barriers and can easily injure themselves in their enclosures.

Porter, Dudley and Todd Jones - Wyneken's former graduate student and now a NOAA physiologist - tethered the turtles to instruments that allowed them to measure the force they produced while swimming.

They also measured the oxygen the turtles consumed (a direct measure of their metabolism) and the heat they exchanged with the environment. All the while, the scientists took video of the tiny turtles.

Then the team recreated a virtual environment with a swimming turtle, to see if they could predict how much energy the turtle was using. Dudley, whose background is in engineering, says Porter uses "on-the-ground" engineering tools in his lab.

They scaled this up to model the three-dimensional motion of swimming juvenile leatherback sea turtles , to find power and heat transfer rates during the larger animal's flipper strokes.

It was here, by playing with the parameters of their virtual reality turtles, that the researchers learned husky turtles were better swimmers than their leaner counterparts.

"That was a surprise and I thought it was a mistake when I originally did it," says Dudley, who eventually learned that the flippers of thinner turtles come closer together at the bottom of their stroke than those of larger turtles, causing them to lose power.

It is that question - how does body size interact with the physical environment to constrain evolutionary design - that lies at the crux of the study's findings.

"We can literally design animals now and ask how are they going to function, just like a car or a rocket ship," says Porter. He is currently engaged in a UW-Madison initiative called Climate Quest, a competition to solve climate-change problems, and is putting this expertise to use.

In his project, he is assessing the impact of climate change on milk production in dairy cows in order to "select for cows 50 or 100 years from now," to improve production both now and in the face of a different planet.

"Now that we have (models) for both marine and terrestrial environments, we can answer those types of questions and get back to the big mass extinctions and get some insights into how did animals live before and after those extinctions," Porter says. "Why were the animals that survived able to survive?"

The researchers collaborated with Riccardo Bonazza, a UW-Madison professor of engineering physics, to develop their swimming turtle models. And it was the art department, says Porter, that enabled them to create a virtual swimming turtle.

"When you're looking at a problem, the more different ways you can look at it, the more different perspectives you can get on it, the more ideas you can have on how to deal with it and ... on different directions you can go," says Porter.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Researchers track ammonium source in open ocean
Providence RI (SPX) Oct 30, 2014
To understand the extent to which human activities are polluting Earth's atmosphere and oceans, it's important to distinguish human-made pollutants from compounds that occur naturally. A recent study co-authored by a Brown University professor does just that for ammonium, a compound that is produced by human activities like agriculture, as well as by natural processes that occur in the oce ... read more


WATER WORLD
Rains hamper Sri Lanka mudslide tragedy search effort

Indians angry Anderson never tried over Bhopal disaster

Italy ignores pleas, ends boat migrant rescue operation

Love offers fresh dreams for Philippine typhoon survivors

WATER WORLD
Russian Bank Offers 5 Billion Rubles for GLONASS

Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

ISRO to Launch India's Third Navigation Satellite on October 16

WATER WORLD
Psychedelic mushrooms enable a hyperconnected brain

Free urban data - what's it good for?

Urban seismic network detects human sounds

Death and social media: what happens next

WATER WORLD
Emerging disease could wipe out American, European salamanders

Thriving in Poland, Hucul ponies yet to gallop in native Ukraine

Philippines' rare dwarf buffalo charges against extinction

Evolution of competitiveness

WATER WORLD
Flu or Ebola? US hospitals prepare for a confusing season

British navy arrives to 'kick Ebola out of Sierra Leone'

China 'vulnerable' to Ebola outbreak: expert

US envoy says France can do more to fight Ebola

WATER WORLD
Hong Kong activists mull taking protest to Beijing

Fewer Chinese couples want second child than expected: media

China plans to scrap death penalty for 9 crimes: Xinhua

Cultural Revolution evoked with China mass sentencing

WATER WORLD
WATER WORLD
US economy clocks solid growth in third quarter

China manufacturing growth slows in October: govt

Bank of Japan expands monetary easing plan as economy slows

Japan factory output posts surprise jump but recovery unclear




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.