Subscribe free to our newsletters via your




TIME AND SPACE
Quantum diffraction at a breath of nothing
by Staff Writers
Vienna, Austria (SPX) Aug 27, 2015


Modern fabrication methods allow to make atomically thin nanomasks which prove to be sufficiently robust for experiments in molecular quantum optics. Image courtesy Quantennanophysik, Fakultat fur Physik, Universitat Wien; Bild-Design: Christian Knobloch. For a larger version of this image please go here.

The quantum mechanical wave nature of matter is the basis for a number of modern technologies like high resolution electron microscopy, neutron-based studies on solid state materials or highly sensitive inertial sensors working with atoms. The research in the group around Prof. Markus Arndt at the University of Vienna is focused on how one can extend such technologies to large molecules and cluster.

In order to demonstrate the quantum mechanical nature of a massive object it has to be delocalized first. This is achieved by virtue of Heisenberg's uncertainty relation: If molecules are emitted from a point-like source, they start to 'forget' their position after a while and delocalize. If you place a grating into their way, they cannot know, not even in principle, through which slit they are flying.

It is as if they traversed several slits at the same time. This results in a characteristic distribution of particles behind the grating, known as the diffraction or interference pattern. It can only be understood if we take the particles' quantum mechanical wave nature into account.

At the technological limit
In a European collaboration (NANOQUESTFIT) together with partners around Professor Ori Cheshnovsky at Tel Aviv University (where all nanomasks were written), as well as with support by groups in Jena (growth of biphenyl membranes, Prof. Turchanin), and Vienna (High-Resolution Electron Microscopy, Prof. Meyer) they now demonstrated for the first time that such gratings can be fabricated even from the thinnest conceivable membranes.

They milled transmission masks into ultra-thin membranes of silicon nitride, biphenyl molecules or carbon with a focussed ion beam and analysed them with ultra-high resolution electron microscopy. The team succeeded in fabricating stable and sufficiently large gratings even in atomically thin single layer graphene.

In previous quantum experiments of the same EU collaboration, the thickness of diffraction masks was already as thin as a hundredth of the diameter of a hair. However, even such structures were still too thick for the diffraction of molecules composed of dozens of atoms.

The same force that allows geckos to climb walls restricts the applicability of material gratings in quantum diffraction experiments: Molecules are attracted to the grating bars like the geckos' toes to the wall. However, once they stick to the surface they are lost to the experiment. A grand challenge was to reduce the material thickness and thus the attractive interactions of these masks down to the ultimate limit while retaining a mechanically stable structure.

"These are the thinnest possible diffraction masks for matter wave optics. And they do their job very well", says Christian Brand, the lead author of this publication. "Given the gratings' thickness of a millionth of a millimetre, the interaction time between the mask and the molecule is roughly a trillion times shorter than a second. We see that this is compatible with high contrast quantum interference".

A thought experiment of Bohr and Einstein
The bars of the nanogratings look resemble the strings of a miniature harp. One may therefore wonder whether the molecules induce vibrations in these strings when they are deflected to the left or the right during quantum diffraction. If this were the case the grating bars could reveal the molecular path through the grating and quantum interference should be destroyed.

The experiment thus realizes a thought experiment that was discussed by Nils Bohr and Albert Einstein already decades ago: They asked whether it is possible to know the path a quantum takes through a double slit while observing its wave nature.

The solution to this riddle is again provided by Heisenberg's uncertainty principle: Although the molecules give the grating a little kick in the diffraction process this recoil remains always smaller than the quantum mechanical momentum uncertainty of the grating itself. It therefore remains undetectable. Here it is shown that this applies even to membranes that are only one atom thick.

Publication in "Nature Nanotechnology": "An atomically thin matter-wave beamsplitter"; C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, M. Arndt; Nature Nanotechnology (2015)


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Vienna
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Attosecond electron catapult
Munich, Germany (SPX) Aug 19, 2015
Physicists from Ludwig-Maximilians-Universitat (LMU) in Munich studied the interaction of light with tiny glass particles. A team of physicists and chemists from Ludwig-Maximilians-Universitat Munich (LMU) and the Laboratory of Attosecond Physics (LAP) at the Max Planck Institute of Quantum Optics (MPQ), from the Institute of Physics of the University of Rostock, and from the Freie Universitat B ... read more


TIME AND SPACE
Satellites focus on rescue and damage control work

'Kids on the frontline': China firefighters in spotlight after blasts

Ten years after Katrina, New Orleans is bustling

China's disaster playbook falls short in Tianjin blasts

TIME AND SPACE
Alibaba joins China arms maker to offer location services

Beidou satellites begin autonomous operation in space

Russia may offer Glonass-based navigation system for light aircraft

Antenova announces embedded GNSS antenna for accurate positioning

TIME AND SPACE
The unique ecology of human predators

Most complete human brain model to date is a 'brain changer'

Oldest-ever humanlike hand bone found in Tanzania

Mass grave site yields evidence of Stone Age massacre

TIME AND SPACE
Worsening wind forecasts signal stormy times ahead for seabirds

Earliest baboon found at Malapa

Bacteria's secret weapon against pesticides and antibiotics revealed

Honey bees rapidly evolve to overcome new disease

TIME AND SPACE
Agricultural intervention improves HIV outcomes

Second human plague case probed at Yosemite Park

Squirrels in Yosemite campground test positive for plague

New bio-containment system unveiled in Georgia

TIME AND SPACE
China fashion exhibition is New York smash hit

China media urges US 'sincerity' over escaped officials

US warns China on agents pressuring fugitives to go home: report

Chinese general with gold statue trove given suspended death sentence

TIME AND SPACE
Rio airport agents bribed in Chinese immigrant scandal

All bets are off inside Laos' jungle sin city

Football: FIFA sets election date as Blatter finally rules himself out

Piracy, other maritime crimes rise in Southeast Asia

TIME AND SPACE
China-spurred market turbulence to hit global growth: analysts

China to try 30 in business paper corruption case

China pumps $17 bn into banks for economic boost

China's yuan cut a bad omen for France's luxury sector




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.