Subscribe free to our newsletters via your




TIME AND SPACE
Quantum model reveals surface structure of water
by Staff Writers
London, UK (SPX) Apr 24, 2015


This shows the heterogeneous electronic density created by the diverse molecular orientations at the liquid-vapor interface of water. Image courtesy NPL/University of Edinburgh. For a larger version of this image please go here.

The National Physical Laboratory (NPL), the UK's National Measurement Institute in collaboration with IBM and the University of Edinburgh, has used a new quantum model to reveal the molecular structure of water's liquid surface.

The liquid-vapour interface of water is one of the most common of all heterogeneous (or non-uniform) environments. Understanding its molecular structure will provide insight into complex biochemical interactions underpinning many biological processes. But experimental measurements of the molecular structure of water's surface are challenging, and currently competing models predict various different arrangements.

NPL has been working with IBM and the University of Edinburgh to make materials simulation more predictive and intuitive, by developing a new class of materials model based on quantum mechanical effects.

The model is based on a single charged particle, the quantum Drude oscillator (QDO), which mimics the way the electrons of a real water molecule fluctuate and respond to their environment. This simplified representation retains interactions not normally accessible in classical models and accurately captures the properties of liquid water.

In new research, published in a featured article in the journal Physical Chemistry Chemical Physics, the team used the QDO model to determine the molecular structure of water's liquid surface. The results provide new insight into the hydrogen-bonding topology at the interface, which is responsible for the unusually high surface tension of water.

This is the first time the QDO model of water has been applied to the liquid-vapour interface. The results enabled the researchers to identify the intrinsic asymmetry of hydrogen bonds as the mechanism responsible for the surface's molecular orientation. The model was also capable of predicting the temperature dependence of the surface tension with remarkable accuracy - to within 1 % of experimental values.

Coupled with earlier work on bulk water, this result demonstrates the exceptional transferability of the QDO approach and offers a promising new platform for molecular exploration of condensed matter.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Physical Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
MIT physicists develop new tabletop particle detector
Boston (UPI) Apr 22, 2015
The Large Hadron Collider is the largest particle collider in the world. Its circular tunnel boasts a 17-mile circumference to accelerate particles toward collision inside a detector. The latest particle detector from the labs of MIT is not much bigger than a coffee cup. The tabletop particle detector isn't capable of smashing atoms at high speeds, of course, but it can detect electrons ... read more


TIME AND SPACE
Norway speeds up plans for ship to help Mediterranean migrants

Radioactive drone found on Japan PM office roof

Don't skimp on PC upgrade, Japan watchdog tells Fukushima operator

Hundreds of Barrels of Radioactive Waste Sit 30 Miles off San Francisco

TIME AND SPACE
Telit GNSS module enables high-performance position reporting

China to launch three or four more BeiDou satellites this year

Two new satellites join the Galileo constellation

China launches upgraded satellite for independent SatNav system

TIME AND SPACE
MIT study links family income, test scores, brain anatomy

Technology can transfer human emotions to your palm through air

World's oldest tools found near Africa's Lake Turkana

Neanderthals manipulated bodies shortly after death

TIME AND SPACE
Decreasing biodiversity affects productivity of remaining plants

The scramble for nutrients intensifies as soils age

Male baboons care about more than just big behinds

Big butts aren't everything to male baboons

TIME AND SPACE
THoR Aims to Help Future Patients "Weather the Storm" of Infection

Researchers inform development of Ebola vaccine trials

Meningitis epidemic kills 75 in Niger

Study of African birds reveals hotbed of malaria parasite diversity

TIME AND SPACE
Chinese imperial palace may sue over replica: state media

Man who defaced Mao picture jailed for 14 months

Tibetan man self-immolates in China: reports

China jails outspoken journalist, 71, for seven years

TIME AND SPACE
Sagem-led consortium intoduces anti-piracy system

TIME AND SPACE
China state-owned company unit defaults on bond

China property developer's default an 'isolated' glitch: analysts

China cuts bank reserve ratio requirement as growth slows

IMF: India, Japan to drive Asia as China slows




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.