Subscribe free to our newsletters via your




TIME AND SPACE
Race of the electrons
by Staff Writers
Vienna, Austria (SPX) Jan 15, 2015


In this image, a laser beam removes electrons from a layered metal structure. Attosecond technology allows scientists to measure time delays between electrons from different metal layers. Image courtesy Vienna University of Technology.

It is easy to measure electric current. But it is extremely hard to watch the individual electrons which make up this current. Electrons race through the metal with a speed of several million meters per second, and the distance they have to cover between two adjacent atoms is very small. This means that tiny time intervals have to be resolved in order to watch the electrons dashing through the metal.

Measurements in Garching (Germany) and theoretical calculations at the Vienna University of Technology (Austria) have now made this possible. As it turns out, the motion of the electrons in the metal is remarkably similar to ballistic motion in free space. The results have now been published in the journal "Nature".

The Tiny Timescales of the Quantum World
Albert Einstein already explained the "photoelectric effect" in 1905: light transfers energy to an electron, removing it from the metal. This happens so fast that for a long time it seemed impossible to study the time evolution of this process. In recent years, however, attosecond physics has advanced dramatically, so that time resolved analysis of this process has become possible.

An attosecond is a billionth of a billionth of a second (10^-18 seconds). This is approximately the time it takes light to travel the distance from one atom to the next. Using ultrashort laser pulses, time can now be measured with a precision in the attosecond range.

The data which has now been published in "Nature" was measured at the Max Planck Institute for Quantum Optics in Garching, in a collaboration with TU Munich, the Fritz Haber Institute in Berlin, the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg and LMU Munich. At the Vienna University of Technology, theoretical models and large-scale computer simulations have been developed, in order to analyse and interpret the results.

Racing Electrons
"The experiment allows us to watch a race of electrons", says Professor Joachim Burgdorfer (TU Vienna). Two different metals - tungsten and magnesium - are stacked and hit with a laser pulse. Either in the magnesium or in the tungsten layer, the light can remove electrons, which then find their way to the surface. The distance the electrons have to cover is less than a nanometer, but still it is possible to quantify the lead of the electrons from the magnesium layer, arriving shortly before the electrons from the tungsten layer.

The distance of this race can be tuned: one to five atomic layers of magnesium are deposited on tungsten.

"The thicker the magnesium layer, the larger the lead of its electrons compared to the electrons coming from the tungsten layer", says Christoph Lemell (TU Vienna). The simple relationship between layer thickness and arrival time shows that the electrons travel through the metal ballistically, on rather undisturbed and straight lines. Complex scattering processes do not play an important role on theses time and length scales.

For precise timing, it is crucial to have a very well defined finish line. For the photo-finish, a second laser was used. It influences the electrons the moment they left the metal, but not before. The laser beam must not penetrate the metal.

"Within a distance shorter than the spacing between the metal atoms, the intensity of the laser field changes dramatically", says Georg Wachter (TU Vienna). The field of the laser beam is reduced to almost zero in the outermost layer, whereas right outside the metal the electrons immediately enter a strong laser field. This sharp contrast is the reason these extremely precise time measurements become possible.

The new findings are expected to help with the miniaturization of electronic and photonic elements - and they are another proof for the amazing possibilities of attosecond physics. "This new area of research gives us new methods to develop quantum technologies and study fundamental questions of materials science and electronics", says Joachim Burgdorfer.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Vienna University of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New catalyst process uses light, not metal, for rapid polymerization
Santa Barbara CA (SPX) Jan 13, 2015
A team of chemistry and materials science experts from University of California, Santa Barbara and The Dow Chemical Company has created a novel way to overcome one of the major hurdles preventing the widespread use of controlled radical polymerization. In a global polymer industry valued in the hundreds of billions of dollars, a technique called Atom Transfer Radical Polymerization is emer ... read more


TIME AND SPACE
Pope attracts world-record crowd in wet Philippines

Tugboat sinking in China kills 22 including 8 foreigners

Can quake-hit Haiti manufacture itself a hi-tech future?

Families of China stampede dead demand answers

TIME AND SPACE
Turtles use unique magnetic compass to find birth beach

W3C and OGC to Collaborate to Integrate Spatial Data on the Web

AirAsia disappearance fuels calls for real-time tracking

Four Galileo satellites at ESA test centre

TIME AND SPACE
Stress and social media: it's complicated

World's oldest butchering tools gave evolutionary edge to speech

People conform to the norm, even if the norm is a computer

First human conversations were probably about rocks

TIME AND SPACE
Swedish court gives green light to wolf hunters

New Species Discovered Beneath Ocean Crust

Endangered Amazon monkeys more diverse than thought

Jaw mechanics of a shell-crushing Jurassic fish revealed

TIME AND SPACE
Flu shot just 23 percent effective: US

UN Ebola czar says epidemic has 'passed the tipping point'

Two die of bird flu in China

China diagnosed 104,000 new HIV/AIDs cases in 2014

TIME AND SPACE
China media: Zhou, Bo formed 'clique' to challenge leaders

China mourners mark Zhao anniversary under tight watch

Hong Kong press freedom 'at increasing risk' warns report

China steps up political prosecutions: rights group

TIME AND SPACE
China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

Nobel protester sought to draw attention to 'murdered Mexican students'

Corruption on rise in Turkey, China: Transparency

TIME AND SPACE
China bank lending up in 2014 as govt seeks credit boost

Tycoon Li Ka-Shing losing status as China business 'bellwether': paper

China December inflation rises to 1.5%: govt

Standard Chartered to axe further 2,000 jobs




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.