Subscribe free to our newsletters via your




TECH SPACE
Rethinking the basic science of graphene synthesis
by Staff Writers
University Park (SPX) Sep 10, 2014


A new route to making graphene has been discovered that could make the 21st century's wonder material easier to ramp up to industrial scale. Graphene, which has super strength and the ability to conduct heat and electricity better than any other known material, has potential industrial uses that include flexible electronic displays, high-speed computing, stronger wind-turbine blades, and more-efficient solar cells, among other uses now under development. This image shows a model of the intercalation of Bronsted acid molecules between single-atomic layers of graphene. Image courtesy Mallouk Lab, Penn State University.

A new route to making graphene has been discovered that could make the 21st century's wonder material easier to ramp up to industrial scale. Graphene -- a tightly bound single layer of carbon atoms with super strength and the ability to conduct heat and electricity better than any other known material -- has potential industrial uses that include flexible electronic displays, high-speed computing, stronger wind-turbine blades, and more-efficient solar cells, to name just a few under development.

In the decade since Nobel laureates Konstantin Novoselov and Andre Geim proved the remarkable electronic and mechanical properties of graphene, researchers have been hard at work to develop methods of producing pristine samples of the material on a scale with industrial potential. Now, a team of Penn State scientists has discovered a route to making single-layer graphene that has been overlooked for more than 150 years.

"There are lots of layered materials similar to graphene with interesting properties, but until now we didn't know how to chemically pull the solids apart to make single sheets without damaging the layers," said Thomas E. Mallouk, Evan Pugh Professor of Chemistry, Physics, and Biochemistry and Molecular Biology at Penn State.

In a paper first published online in the journal Nature Chemistry, Mallouk and colleagues at Penn State and the Research Center for Exotic Nanocarbons at Shinshu University, Japan, describe a method called intercalation, in which guest molecules or ions are inserted between the carbon layers of graphite to pull the single sheets apart.

The intercalation of graphite was achieved in 1841, but always with a strong oxidizing or reducing agent that damaged the desirable properties of the material. One of the most widely used methods to intercalate graphite by oxidation was developed in 1999 by Nina Kovtyukhova, a research associate in Mallouk's lab.

While studying other layered materials, Mallouk asked Kovtyukhova to use her method, which requires a strong oxidizing agent and a mixture of acids, to open up single layers of solid boron nitride, a compound with a structure similar to graphite.

To their surprise, she was able to get all of the layers to open up. In subsequent control experiments, Kovtyukhova tried leaving out various agents and found that the oxidizing agent wasn't necessary for the reaction to take place.

Mallouk asked her to try a similar experiment without the oxidizing agent on graphite, but aware of the extensive literature saying that the oxidizing agent was required, Kovtyukhova balked.

"I kept asking her to try it and she kept saying no," Mallouk said. "Finally, we made a bet, and to make it interesting I gave her odds. If the reaction didn't work I would owe her $100, and if it did she would owe me $10. I have the ten dollar bill on my wall with a nice Post-it note from Nina complimenting my chemical intuition."

Mallouk believes the results of this new understanding of intercalation in boron nitride and graphene could apply to many other layered materials of interest to researchers in the Penn State Center for Two-Dimensional and Layered Materials who are investigating what are referred to as "Materials Beyond Graphene." The next step for Mallouk and colleagues will be to figure out how to speed the reaction up in order to scale up production.

.


Related Links
Penn State
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
A Metallic Alloy That is Tough and Ductile at Cryogenic Temperatures
Berkeley CA (SPX) Sep 10, 2014
A new concept in metallic alloy design - called "high-entropy alloys" - has yielded a multiple-element material that not only tests out as one of the toughest on record, but, unlike most materials, the toughness as well as the strength and ductility of this alloy actually improves at cryogenic temperatures. This multi-element alloy was synthesized and tested through a collaboration of researcher ... read more


TECH SPACE
Italian Air Force SAR units fly AgustaWestland HH-139A aircraft

50 feared dead as bus plunges into gorge in India

Fukushima workers to sue TEPCO for danger pay

Macedonia detains 100 Syrian, Iraqi immigrants

TECH SPACE
Australia approves GPS project

Too Early for Conclusions on Galileo Satellites Incident

Russia's Foton-M Satellite Landing Scheduled for September 1

Galileo Satellites Incident Likely Result of Software Errors

TECH SPACE
Economic forces killing 25 percent of the world's languages

Scientists find possible neurobiological basis for tradeoff between honesty, self-interest

War between bacteria and phages benefits humans

Extinctions during human era worse than thought

TECH SPACE
Kenya poaching crisis a 'national disaster'

Galapagos invasion is global warning

Scientists advocate for monarch butterfly conservation

Changing microbial dynamics in the wake of the Macondo blowout

TECH SPACE
Russian Scientists Develop Patent Technology for Unique Flu Vaccine

A new way to diagnose malaria

Obama warns stopping Ebola 'will not be easy'

Leading Ebola researcher says there's an effective treatment for Ebola

TECH SPACE
Dog 'cleaned' in washing machine sparks anger in Hong Kong

China holds eight for media coverage extortion

Dalai Lama cancels South Africa trip amid visa row

China rewards intermarriage in restive Xinjiang: state media

TECH SPACE
Hijacked Singaporean ship released near Nigeria: Seoul

Chinese fish farmer freed after Malaysia kidnapping

US begins 'unprecedented' auction of Silk Road bitcoins

Malaysian navy foils pirate attack in South China Sea

TECH SPACE
Political unrest will hit Hong Kong economy: Moody's

Japan Q2 economy shrinks more than thought

China's promised reforms moving too slowly: EU businesses

BoJ holds off fresh stimulus despite slowdown




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.