Subscribe free to our newsletters via your




NANO TECH
Rice scientists use light to probe acoustic tuning in gold nanodisks
by Staff Writers
Dallas TX (SPX) May 14, 2015


Rice University researchers (clockwise from front) Man-Nung Su, Wei-Shun Chang and Fangfang Wen discovered a new method to tune the light-induced vibrations of nanoparticles through slight alterations to the surface to which they are attached. Image courtesy Jeff Fitlow/Rice University. For a larger version of this image please go here.

In a study that could open doors for new applications of photonics from molecular sensing to wireless communications, Rice University scientists have discovered a new method to tune the light-induced vibrations of nanoparticles through slight alterations to the surface to which the particles are attached.

In a study published online this week in Nature Communications, researchers at Rice's Laboratory for Nanophotonics (LANP) used ultrafast laser pulses to induce the atoms in gold nanodisks to vibrate. These vibrational patterns, known as acoustic phonons, have a characteristic frequency that relates directly to the size of the nanoparticle. The researchers found they could fine-tune the acoustic response of the particle by varying the thickness of the material to which the nanodisks were attached.

"Our results point toward a straightforward method for tuning the acoustic phonon frequency of a nanostructure in the gigahertz range by controlling the thickness of its adhesion layer," said lead researcher Stephan Link, associate professor of chemistry and in electrical and computer engineering.

Light has no mass, but each photon that strikes an object imparts a miniscule amount of mechanical motion, thanks to a phenomenon known as radiation pressure. A branch of physics known as optomechanics has developed over the past decade to study and exploit radiation pressure for applications like gravity wave detection and low-temperature generation.

Link and colleagues at LANP specialize in another branch of science called plasmonics that is devoted to the study of light-activated nanostructures. Plasmons are waves of electrons that flow like a fluid across a metallic surface.

When a light pulse of a specific wavelength strikes a metal particle like the puck-shaped gold nanodisks in the LANP experiments, the light energy is converted into plasmons. These plasmons slosh across the surface of the particle with a characteristic frequency, in much the same way that each phonon has a characteristic vibrational frequency.

The study's first author, Wei-Shun Chang, a postdoctoral researcher in Link's lab, and graduate students Fangfang Wen and Man-Nung Su conducted a series of experiments that revealed a direct connection between the resonant frequencies of the plasmons and phonons in nanodisks that had been exposed to laser pulses.

"Heating nanostructures with a short light pulse launches acoustic phonons that depend sensitively on the structure's dimensions," Link said. "Thanks to advanced lithographic techniques, experimentalists can engineer plasmonic nanostructures with great precision. Based on our results, it appears that plasmonic nanostructures may present an interesting alternative to conventional optomechanical oscillators."

Chang said plasmonics experts often rely on substrates when using electron-beam lithography to pattern plasmonic structures. For example, gold nanodisks like those used in the experiments will not stick to glass slides. But if a thin substrate of titanium or chromium is added to the glass, the disks will adhere and stay where they are placed.

"The substrate layer affects the mechanical properties of the nanostructure, but many questions remain as to how it does this," Chang said. "Our experiments explored how the thickness of the substrate impacted properties like adhesion and phononic frequency."

Link said the research was a collaborative effort involving research groups at Rice and the University of Melbourne in Victoria, Australia. Read the paper here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
'Microcombing' creates stronger, more conductive carbon nanotube films
Raleigh NC (SPX) May 08, 2015
Researchers from North Carolina State University and China's Suzhou Institute of Nano-Science and Nano-Biotics have developed an inexpensive technique called "microcombing" to align carbon nanotubes (CNTs), which can be used to create large, pure CNT films that are stronger than any previous such films. The technique also improves the electrical conductivity that makes these films attractive for ... read more


NANO TECH
McMurdo Opens Emergency Readiness and Response Experience Center

EU firms up plans to tackle smugglers as more boat migrants rescued

British aid helicopters turned back from Nepal

Nepalis hit by twin quakes left to rebuild lives alone

NANO TECH
Advanced Navigation Releases Interface and Logging Unit

Raytheon delivers hardware for next-gen USAF GPS system

Russia, China Agree on Joint Exploitation of Glonass Navigation Systems

Most Advanced GPS Satellite Comes Together

NANO TECH
A new chapter in Earth history

Microsoft: Humans have shorter attention span than a goldfish

Can skull shape determine what food was on prehistoric plates

Study finds ancient clam beaches not so natural

NANO TECH
Long-term study on ticks reveals shifting migration patterns, disease risks

Trap-jaw ants use spring-loaded jaws to jump from predators

Photosynthesis has unique isotopic signature

Tortoise approach works best - even for evolution

NANO TECH
AIDS expert flays Kremlin, says Russia's HIV epidemic worsening

Engineering bacteria to design vaccines

Damming and damning hemorrhagic diseases

Scientists aim to forecast West Nile outbreaks

NANO TECH
China releases video of scuffle before police killing

Hong Kong street stalls hang on under the skyscrapers

Torture, abuse of suspects widespread in China: NGO

Runaway China official suspected of graft repatriated

NANO TECH
A blast and gunfire: Mexico's chopper battle

NANO TECH
HSBC subsidiary announces sale of 10% stake in Chinese bank

China April economic data at multi-year lows

China consumer inflation rises subdued 1.5% in April

China manufacturing index at one-year low: HSBC




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.