Subscribe free to our newsletters via your




TIME AND SPACE
Science: Theory of the strong interaction verified
by Staff Writers
Julich, Germany (SPX) Mar 30, 2015


This image shows supercomputer JUQUEEN. Image courtesy Forschungszentrum Julich. For a larger version of this image please go here.

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltan Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference.

The findings, which have been published in the current edition of Science, are considered a milestone by many physicists and confirm the theory of the strong interaction. As one of the most powerful computers in the world, JUQUEEN at Forschungszentrum Julich was decisive for the simulation.

The existence and stability of atoms relies heavily on the fact that neutrons are slightly more mas-sive than protons. The experimentally determined masses differ by only around 0.14 percent.

A slightly smaller or larger value of the mass difference would have led to a dramatically different universe, with too many neutrons, not enough hydrogen, or too few heavier elements. The tiny mass difference is the reason why free neutrons decay on average after around ten minutes, while protons - the unchanging building blocks of matter - remain stable for a practically unlimited period.

In 1972, about 40 years after the discovery of the neutron by Chadwick in 1932, Harald Fritzsch (Germany), Murray Gell-Mann (USA), and Heinrich Leutwyler (Switzerland) presented a consistent theory of particles and forces that form the neutron and the proton known as quantum chromodynamics.

Today, we know that protons and neutrons are composed of "up quarks" and "down quarks". The proton is made of one down and two up quarks, while the neutron is composed of one up and two down quarks.

Simulations on supercomputers over the last few years confirmed that most of the mass of the proton and neutron results from the energy carried by their quark constituents in accordance with Einstein's formula E=mc2. However, a small contribution from the electromagnetic field surrounding the electrically charged proton should make it about 0.1 percent more massive than the neutral neutron. The fact that the neutron mass is measured to be larger is evidently due to the different masses of the quarks, as Fodor and his team have now shown in extremely complex simulations.

For the calculations, the team developed a new class of simulation techniques combining the laws of quantum chromodynamics with those of quantum electrodynamics in order to precisely deter-mine the effects of electromagnetic interactions. By controlling all error sources, the scientists suc-cessfully demonstrated how finely tuned the forces of nature are.

Professor Kurt Binder is Chairman of the Scientific Council of the John von Neumann Institute for Computing (NIC) and member of the German Gauss Centre for Supercomputing. Both organizations allocate computation time on JUQUEEN to users in a competitive process.

"Only using world-class computers, such as those available to the science community at Forschungszentrum Julich, was it possible to achieve this milestone in computer simulation," says Binder. JUQUEEN was supported in the process by its "colleagues" operated by the French science organizations CNRS and GENCI as well as by the computing centres in Garching (LRZ) and Stuttgart (HLRS).

The results of this work by Fodor's team of physicists from Bergische Universitat Wuppertal, Centre de Physique Theorique de Marseille, Eotvos University Budapest, and Forschungszentrum Julich open the door to a new generation of simulations that will be used to determine the properties of quarks, gluons, and nuclear particles.

According to Professor Kalman Szabo from Forschungszentrum Julich, "In future, we will be able to test the standard model of elementary particle physics with a tenfold increase in precision, which could possibly enable us to identify effects that would help us to uncover new physics beyond the standard model."

"Forschungszentrum Julich is supporting the work of excellent researchers in many areas of science with its supercomputers. Basic research such as elementary particle physics is an area where methods are forged, and the resulting tools are also welcomed by several other users," says Prof. Dr. Sebastian M. Schmidt, member of the Board of Directors at Julich who has supported and encouraged these scientific activities for years.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Forschungszentrum Juelich
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Physicists solve low-temperature magnetic mystery
Mansfield CT (SPX) Mar 27, 2015
Researchers have made an experimental breakthrough in explaining a rare property of an exotic magnetic material, potentially opening a path to a host of new technologies. From information storage to magnetic refrigeration, many of tomorrow's most promising innovations rely on sophisticated magnetic materials, and this discovery opens the door to harnessing the physics that governs those material ... read more


TIME AND SPACE
Gust of severe storms damage: insurer Swiss Re

Japan Plans 250-Mile Chain of Sea Walls to Fend Off Tsunamis

UN ask for $30mn to help cyclone-ravaged Vanuatu

UN disaster meet criticised for lack of targets

TIME AND SPACE
Galileo satellites enclosed for Friday's launch

Countdown Begins for ISRO's Navigation Satellite Launch

Europe poised to launch more navigation satellites

3-D satellite, GPS earthquake maps isolate impacts in real time

TIME AND SPACE
Did volcanic cataclysm trigger final demise of the Neanderthals

Autistic and non-autistic brain differences isolated for first time

Carbon nanotube fibers make superior links to brain

Scientist hopes vest will broaden range of human senses

TIME AND SPACE
Rethinking wetland restoration: Smaller wetlands more valuable than previously thought

Squid enrich their DNA 'blueprint' through prolific RNA editing

Is blood really thicker than water

Botswana conference heightens alarm over illegal wildlife trade

TIME AND SPACE
Gates calls for 'germ games' instead of war games

US to Deploy Chemical Brigade to Liberia to Combat Ebola

Swine flu outbreak in India raises concern

British Ebola patient flown home from S. Leone

TIME AND SPACE
Three Chinese tourists killed in Thai bus crash

Chinese anti-censorship group says it's under attack

China eyes return of 'stolen' mummy: reports

Tibetan survivors of self-immolations face brutal fate: rights group

TIME AND SPACE
Sagem-led consortium intoduces anti-piracy system

China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

TIME AND SPACE
Bank of China net profit up 8% in 2014

IMF head welcomes China-backed bank on Beijing visit

China overseas investment jumps in February on Dutch deal: govt

China investigates former free trade zone official




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.