Subscribe free to our newsletters via your




CHIP TECH
Spintronics just got faster
by Staff Writers
Lausanne, Switzerland (SPX) Jul 21, 2015


This the 2-dimensional Ultrafast UV spectroscopy set-up at EPFL's Laboratory of Ultrafast Spectroscopy, used to carry out the measurements in this study. Image courtesy Alain Herzog/EPFL. For a larger version of this image please go here.

In a tremendous boost for spintronic technologies, EPFL scientists have shown that electrons can jump through spins much faster than previously thought. Electrons spin around atoms, but also spin around themselves, and can cross over from one spin state to another. A property which can be exploited for next-generation hard drives.

However, "spin cross-over" has been considered too slow to be efficient. Using ultrafast measurements, EPFL scientists have now shown for the first time that electrons can cross spins at least 100,000 times faster than previously thought. Aside for its enormous implications for fundamental physics, the finding can also propel the field of spintronics forward. The study is published in Nature Chemistry.

The rules of spin
Although difficult to describe in everyday terms, electron spin can be loosely compared to the rotation of a planet or a spinning top around its axis. Electrons can spin in different manners referred to as "spin states" and designated by the numbers 0, 1/2, 1, 3/2, 2 etc. During chemical reactions, electrons can cross from one spin state to another, e.g. from 0 to 1 or 1/2 to 3/2.

Spin cross-over is already used in many technologies, e.g. optical light-emitting devices (OLED), energy conversion systems, and cancer phototherapy. Most prominently, spin cross-over is the basis of the fledgling field of spintronics. The problem is that spin cross-over has been thought to be too slow to be efficient enough in circuits.

Spin cross-over is extremely fast
The lab of Majed Chergui at EPFL has now demonstrated that spin cross-over is considerably faster than previously thought. Using the highest time-resolution technology in the world, the lab was able to "see" electrons crossing through four spin states within 50 quadrillionths of a second - or 50 femtoseconds.

"Time resolution has always been a limitation," says Chergui. "Over the years, labs have used techniques that could only measure spin changes to a billionth to a millionth of a second. So they thought that spin cross-over happened in this timeframe."

Chergui's lab focused on materials that show much promise in spintronics applications. In these materials, electrons jump through four spin-states: from 0 to 1 to 2. In 2009, Chergui's lab pushed the boundaries of time resolution to show that this 0-2 "jump" can happen within 150 femtoseconds - suggesting that it was a direct event. Despite this, the community still maintained that such spin cross-overs go through intermediate steps.

But Chergui had his doubts. Working with his postdoc Gerald Aubock, they used the lab's world-recognized expertise in ultrafast spectroscopy to "crank up" the time resolution. Briefly, a laser shines on the material sample under investigation, causing its electrons to move. Another laser measures their spin changes over time in the ultraviolet light range.

The finding essentially demolishes the notion of intermediate steps between spin jumps, as it does not allow enough time for them: only 50 quadrillionths of a second to go from the "0" to the "2" spin state. This is the first study to ever push time resolution to this limit in the ultraviolet domain. "This probably means that it's even faster," says Chergui. "But, more importantly, that it is a direct process."

From observation to explanation
With profound implications for both technology and fundamental physics and chemistry, the study is an observation without an explanation. Chergui believes that the key is electrons shuttling back-and-forth between the iron atom at the center of the material's molecules and its surrounding elements. "When the laser light shines on the atom, it changes the electron's spin angle, affecting the entire spin dynamics in the molecule."

It is now up to theoreticians to develop a new model for ultrafast spin changes. On the experimental side of things, Chergui's lab is now focusing on actually observing electrons shuttling inside the molecules. This will require even more sophisticated approaches, such as core-level spectroscopy. Nonetheless, the study challenges ideas about spin cross-over, and might offer long-awaited solutions to the limitations of spintronics.

Aubock G, Chergui M. Sub-50 fs photo-induced spin cross-over in [Fe(bpy)3]2+. Nature Chemistry 20 July 2015. DOI: 10.1038/nchem.2305


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ecole Polytechnique Federale de Lausanne
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Graphene-based film can be used for efficient cooling of electronics
Gothenburg, Sweden (SPX) Jul 14, 2015
Researchers at Chalmers University of Technology have developed a method for efficiently cooling electronics using graphene-based film. The film has a thermal conductivity capacity that is four times that of copper. Moreover, the graphene film is attachable to electronic components made of silicon, which favours the film's performance compared to typical graphene characteristics shown in previou ... read more


CHIP TECH
Latest US shooting sparks debate over military gun ban

Big city mayors tackle slavery, climate change at Vatican

Nepal quake forces 'living goddess' to break decades of seclusion

Free meals offer comfort to Nepal quake victims

CHIP TECH
Russia, Brazil to track space junk with GLONASS

China's Beidou navigation system to track flights

Russia's GLONASS Proves More Than a Match for America's GPS

Russian, Chinese Navigation Systems to Accommodate BRICS Members

CHIP TECH
Study: Subject experts have tendency to "overclaim" false information

Genetic studies link indigenous peoples in the Amazon and Australasia

The population history of Native Americans

Genome analysis pins down arrival and spread of first Americans

CHIP TECH
Humped-back model of plant diversity withstands controversy

Scientists hope vaccine will save Tasmanian devil

Why offspring cope better with climate change

Jurassic saw fastest mammal evolution

CHIP TECH
Lack of knowledge on animal disease leaves humans at risk

UN needs $20 million to battle bird flu in West Africa

Chemists help develop a novel drug to fight malaria

Ban says world on way to 'generation free of AIDS'

CHIP TECH
Chinese former presidential aide faces graft prosecution: Xinhua

China held tourists after 'watching Genghis Khan video'

Detained China human rights lawyer 'confesses': state media

China cremates revered Tibetan monk againt family wishes: groups

CHIP TECH
Football: FIFA sets election date as Blatter finally rules himself out

Piracy, other maritime crimes rise in Southeast Asia

Mexico army ordered soldiers to kill criminals: NGO

Malaysian navy shadows tanker, urges hijackers to give up

CHIP TECH
United Technologies hit by Chinese building stall

US bank profits withstand trading hit from China, Greece

China says gold stash rose almost 60% in six years

China's Q2 GDP growth beats forecasts as stimulus kicks in




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.