Subscribe free to our newsletters via your




TIME AND SPACE
Super sensitive measurement of magnetic fields
by Staff Writers
Copenhagen, Denmark (SPX) Mar 31, 2015


File image.

There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers from the Niels Bohr Institute have just developed a method that could be used to obtain extremely precise measurements of ultra-small magnetic fields. The results are published in the scientific journal Nature Physics.

The tiny magnetic fields are all the way down on the atomic level. The atoms do not stand still, they revolve around themselves and the axis is like a tiny magnetic rod. But the axis has a slight tilt and as a result the magnetic rod swings in circles. To measure a swinging object you need to have both its position and the speed of the oscillation.

But in the world of atoms, the laws of classical physics from the world as we know it do not apply - here the laws of quantum physics rule. Heisenberg and Bohr's laws of quantum uncertainty relations state that when one measures a system, you cannot simultaneously measure the position of a particle and its speed and get a precise number. You can measure one of these variables, for example, the position and get a number with almost unlimited precision.

In the same measurement, the speed of the particle would then be uncertain. If you measure the precise speed of the particle, you would then get an uncertain position in the same measurement. Likewise, the laws of quantum physics state then when you measure a rotating motion, you cannot simultaneously measure the rotational speed and direction of the rotational axis.

Precise squeezed measurements
"To get accurate measurements of ultra-small magnetic fields, we have devised a way to almost escape the limitations of quantum physics and we have conducted experiments in the laboratory where we improve the measurements of the oscillating atoms. The newly developed sensor that can measure the ultra-small magnetic field is comprised of a collection of atoms in gaseous form," explains professor Eugene Polzik, head of the research group Quantop at the Niels Bohr Institute at the University of Copenhagen.

In the quantum optics laboratory, the researchers have a small glass tube that contains a cloud of billions of caesium gas atoms. The glass tube is 10 millimeters long and has a diameter of only 300 micrometers (a micrometer is one millionth of a meter).

The atoms revolve around themselves on a tilted axis, but the gas atoms are flying around helter skelter and the tilted axes of the atoms are oriented in all possible directions. Using laser light, the tilts of all the atoms are turned in the same direction. This direction could be knocked off course when the atoms crash into the glass wall, but the glass tube has an inner coating that ensures they hold course.

Now the researchers send a new beam of laser light with a different frequency into the gas atoms and then a strange quantum phenomenon takes place, the light and the gas atoms become entangled. The fact that they are entangled means that they have established a quantum link - they are synchronised and are now totally aligned.

The laser light is sent with a certain pulse and you can now measure the direction of the atomic axis, but only one direction. This means that when the atoms revolve around themselves, its tilted axis forms a circle and you cannot measure the precise position of the entire circular swing of the axis. But you can divide a circle into a north/south direction and an east/west direction.

"What we then do is measure one of the directions, for example, the east/west direction. This is called a squeezed state and this can be measured with very little inaccuracy. This is very useful, because for many measurements of external magnetic fields it is only necessary to measure the east/west direction and thus we can calculate the ultra-small magnetic fields with high precision," says Eugene Polzik.

Super sensitive measurements of tiny electromagnetic fields and forces are important in relation to research in biology and medicine and the research group therefore has a collaboration with the doctors at the Faculty of Health and Medical Sciences at the University of Copenhagen.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Copenhagen - Niels Bohr Institute
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Science: Theory of the strong interaction verified
Julich, Germany (SPX) Mar 30, 2015
The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltan Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass d ... read more


TIME AND SPACE
Nine dead in Myanmar jade mine landslide: state media

Baby among 15 killed by landslide in Indian Kashmir

UN chief calls for more aid for Iraq displaced

UN vows to step up Iraq heritage protection

TIME AND SPACE
Two new satellites join the Galileo constellation

China launches upgraded satellite for independent SatNav system

India Launches Fourth Satellite in Effort to Develop Own Navigation System

Europe resumes Galileo satnav deployment

TIME AND SPACE
Researchers improve efficiency of human walking

'Little Foot' 3.67 million years old

How we hear distance

Earliest humans had diverse range of body types, just as we do today

TIME AND SPACE
Keeping hungry jumbos at bay

Malawi postpones ivory torching

Scientists discover why flowers bloom earlier in a warming climate

Lizard activity levels can help scientists predict environmental change

TIME AND SPACE
New class of insecticides offers safer, more targeted mosquito control

Meningitis epidemic kills 45 in Niger

Gates calls for 'germ games' instead of war games

US to Deploy Chemical Brigade to Liberia to Combat Ebola

TIME AND SPACE
Fashion victim: Chinese designers face struggle

China drives 66 golf courses into the rough

Three Chinese tourists killed in Thai bus crash

Chinese anti-censorship group says it's under attack

TIME AND SPACE
Sagem-led consortium intoduces anti-piracy system

China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

TIME AND SPACE
China official PMI shows expansion in positive sign

China home prices fall in March; Bank deposit insurance starts May 1

China seeks to boost property market as economy slows

Bank of China net profit up 8% in 2014




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.