Subscribe free to our newsletters via your




TECH SPACE
Surprising discoveries about 2-D molybdenum disulfide
by Staff Writers
Berkeley CA (SPX) Aug 18, 2015


With the Campanile probe, optical excitation and collection are spatially confined to the nano-sized gap at the apex of the tip, which is scanned over the sample, recording a full emission spectrum at each position. Image courtesy James Schuck, Berkeley Lab. For a larger version of this image please go here.

Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have used a unique nano-optical probe to study the effects of illumination on two-dimensional semiconductors at the molecular level.

Working at the Molecular Foundry, a DOE Office of Science User Facility, the scientific team used the "Campanile" probe they developed to make some surprising discoveries about molybdenum disulfide, a member of a family of semiconductors, called "transition metal dichalcogenides (TMDCs), whose optoelectronic properties hold great promise for future nanoelectronic and photonic devices.

"The Campanile probe's remarkable resolution enabled us to identify significant nanoscale optoelectronic heterogeneity in the interior regions of monolayer crystals of molybdenum disulfide, and an unexpected, approximately 300 nanometer wide, energetically disordered edge region," says James Schuck, a staff scientist with Berkeley Lab's Materials Sciences Division.

Schuck led this study as well as the team that created the Campanile probe, which won a prestigious R and D 100 Award in 2013 for combining the advantages of scan/probe microscopy and optical spectroscopy.

"This disordered edge region, which has never been seen before, could be extremely important for any devices in which one wants to make electrical contacts," Schuck says. "It might also prove critical to photocatalytic and nonlinear optical conversion applications."

Schuck, who directs the Imaging and Manipulation of Nanostructures Facility at the Molecular Foundry, is the corresponding author of a paper describing this research in Nature Communications. The paper is titled "Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide." The co-lead authors are Wei Bao and Nicholas Borys. (See below for a complete list of authors.)

2D-TMDCs rival graphene as potential successors to silicon for the next generation of high-speed electronics. Only a single molecule in thickness, 2D-TMDC materials boast superior energy efficiencies and a capacity to carry much higher current densities than silicon.

However, since their experimental "discovery" in 2010, the performance of 2D-TMDC materials has lagged far behind theoretical expectations primarily because of a lack of understanding of 2D-TMDC properties at the nanoscale, particularly their excitonic properties. Excitons are bound pairs of excited electrons and holes that enable semiconductors to function in devices.

"The poor understanding of 2D-TMDC excitonic and other properties at the nanoscale is rooted in large part to the existing constraints on nanospectroscopic imaging," Schuck says. "With our Campanile probe, we overcome nearly all previous limitations of near-field microscopy and are able to map critical chemical and optical properties and processes at their native length scales."

The Campanile probe, which draws its name from the landmark "Campanile" clock tower on the campus of the University of California at Berkeley, features a tapered, four-sided microscopic tip that is mounted on the end of an optical fiber. Two of the Campanile's sides are coated with gold and the two gold layers are separated by just a few nanometers at the tip. The tapered design enables the Campanile probe to channel light of all wavelengths down into an enhanced field at the apex of the tip. The size of the gap between the gold layers determines the resolution, which can be below the diffraction optical limit.

In their new study, Schuck, Bao, Borys and their co-authors used the Campanile probe to spectroscopically map nanoscale excited-state/relaxation processes in monolayer crystals of molybdenum disulfide that were grown by chemical vapor deposition (CVD). Molybdenum disulfide is a 2D semiconductor that features high electrical conductance comparable to that of graphene, but, unlike graphene, has natural energy band-gaps, which means its conductance can be switched off.

"Our study revealed significant nanoscale optoelectronic heterogeneity and allowed us to quantify exciton-quenching phenomena at crystal grain boundaries," Schuck said.

"The discovery of the disordered edge region constitutes a paradigm shift from the idea that only a 1D metallic edge state is responsible for all the edge-related physics and photochemistry being observed in 2D-TMDCs. What's happening at the edges of 2D-TMDC crystals is clearly more complicated than that. There's a mesoscopic disordered region that likely dominates most transport, nonlinear optical, and photocatalytic behavior near the edges of CVD-grown 2D-TMDCs."

In this study, Schuck and his colleagues also discovered that the disordered edge region in molybdenum disulfide crystals harbors a sulfur deficiency that holds implications for future optoelectronic applications of this 2D-TMDC.

"Less sulfur means more free electrons are present in that edge region, which could lead to enhanced non-radiative recombination," Schuck says. "Enhanced non-radiative recombination means that excitons created near a sulfur vacancy would live for a much shorter period of time."

Schuck and his colleagues plan to next study the excitonic and electronic properties that may arise, as well as the creation of p-n junctions and quantum wells, when two disparate types of TMDCs are connected

"We are also combining 2D-TMDC materials with so-called meta surfaces for controlling and manipulating the valley states and circular emitters that exist within these systems, as well as exploring localized quantum states that could act as near-ideal single-photon emitters and quantum-entangled Qubit states," Schuck says.

In addition to Schuck, Bao, Borys and Weber-Bargioni, other co-authors of the Nature Communications paper are Changhyun Ko, Joonki Suh, Wen Fan, Andrew Thron, Yingjie Zhang, Alexander Buyanin, Jie Zhang, Stefano Cabrini, Paul Ashby, Alexander Weber-Bargioni, Sefaattin Tongay, Shaul Aloni, Frank Ogletree, Junqiao Wu and Miquel Salmeron.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Disney Research produces 3D objects with variable elasticity using single material
Glendale CA (SPX) Aug 07, 2015
A 3D-printed teddy bear can have a stiff head, a pliable tummy and bendable arms, even though all of it is made of the same relatively stiff material, using a new method developed by Disney Research. By using the printer to alter the small-scale structure of the material, the Disney researchers showed they could vary its elasticity dramatically within the same object. They developed famili ... read more


TECH SPACE
'Hundreds of tonnes' of cyanide at China blasts site: military

17 dead, 400 hurt in China explosives warehouse blasts

China landslide leaves more than 60 missing: local govt

Funds shortage may end UN chopper aid to quake-hit Nepal

TECH SPACE
Antenova announces embedded GNSS antenna for accurate positioning

Surfing for science

Russia develops national high-end navigation system

ISRO is hoping its 'BIG' offering would gain popularity in the market

TECH SPACE
World population to top 11 billion by end of the century

Wild bonobos show similarities to development of human speech

Body size increase did not play a role in the origins of Homo genus

Take a trip through the brain

TECH SPACE
Scientists decode octopus genome, reveal cephalopod secrets

Wild boar populations growing across Europe

Doctors attempt to grow a monkey arm in the lab

New biosensors for managing microbial 'workers'

TECH SPACE
Ebola: The epidemic's timeline

It takes a village to ward off dangerous infections

Fighting mosquito resistance to insecticides

Mowing dry detention basins makes mosquito problems worse, team finds

TECH SPACE
Chinese general with gold statue trove given suspended death sentence

US senators to Obama: Address human rights with China

China bans 120 'harmful' songs online

Prosecutors to be punished if China graft suspects kill selves

TECH SPACE
All bets are off inside Laos' jungle sin city

Football: FIFA sets election date as Blatter finally rules himself out

Piracy, other maritime crimes rise in Southeast Asia

Mexico army ordered soldiers to kill criminals: NGO

TECH SPACE
IMF warns of 'disorderly correction' if China reform slows

China's yuan devaluation: What is it worth?

China gold reserves up more than 19 tonnes in July: Xinhua

China devalues yuan nearly 2% for economic boost




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.