Subscribe free to our newsletters via your




TECH SPACE
Graphene edges can be tailor-made
by Staff Writers
Houston TX (SPX) Jan 29, 2015


Graphene nanoribbons can be enticed to form favorable "reconstructed" edges by pulling them apart with the right force and at the right temperature, according to researchers at Rice University. The illustration shows the crack at the edge that begins the formation of five- and seven-atom pair under the right conditions. Image courtesy ZiAng Zhang/Rice University.

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get the edges they need for applications.

New research by Rice physicist Boris Yakobson and his colleagues shows it should be possible to control the edge properties of graphene nanoribbons by controlling the conditions under which the nanoribbons are pulled apart.

The way atoms line up along the edge of a ribbon of graphene -- the atom-thick form of carbon -- controls whether it's metallic or semiconducting. Current passes through metallic graphene unhindered, but semiconductors allow a measure of control over those electrons.

Since modern electronics are all about control, semiconducting graphene (and semiconducting two-dimensional materials in general) are of great interest to scientists and industry working to shrink electronics for applications.

In the work, which appeared this month in the Royal Society of Chemistry journal Nanoscale, the Rice team used sophisticated computer modeling to show it's possible to rip nanoribbons and get graphene with either pristine zigzag edges or what are called reconstructed zigzags.

Perfect graphene looks like chicken wire, with each six-atom unit forming a hexagon. The edges of pristine zigzags look like this: /\/\/\/\/\/\/\/\. Turning the hexagons 30 degrees makes the edges "armchairs," with flat tops and bottoms held together by the diagonals. The electronic properties of the edges are known to vary from metallic to semiconducting, depending on the ribbon's width.

"Reconstructed" refers to the process by which atoms in graphene are enticed to shift around to form connected rings of five and seven atoms. The Rice calculations determined reconstructed zigzags are the most stable, a desirable quality for manufacturers.

All that is great, but one still has to know how to make them.

"Making graphene-based nano devices by mechanical fracture sounds attractive, but it wouldn't make sense until we know how to get the right types of edges -- and now we do," said ZiAng Zhang, a Rice graduate student and the paper's lead author.

Yakobson, Zhang and Rice postdoctoral researcher Alex Kutana used density functional theory, a computational method to analyze the energetic input of every atom in a model system, to learn how thermodynamic and mechanical forces would accomplish the goal.

Their study revealed that heating graphene to 1,000 kelvins and applying a low but steady force along one axis will crack it in such a way that fully reconstructed 5-7 rings will form and define the new edges. Conversely, fracturing graphene with low heat and high force is more likely to lead to pristine zigzags.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Scientists 'bend' elastic waves with new metamaterials
Columbia MO (SPX) Jan 28, 2015
Sound waves passing through the air, objects that break a body of water and cause ripples, or shockwaves from earthquakes all are considered "elastic" waves. These waves travel at the surface or through a material without causing any permanent changes to the substance's makeup. Now, engineering researchers at the University of Missouri have developed a material that has the ability to cont ... read more


TECH SPACE
Large-scale analytics system for predicting major events described

New York defends storm shutdown

Probe after 11 die in NATO training jet crash in Spain

Hackers target Malaysia Airlines, threaten data dump

TECH SPACE
Europe to resume satnav launches in March: Arianespace

911 Assc says lobbyist behind tactics to derail GLONASS

Congressman claims relying on GLONASS jeopardizes US lives

Turtles use unique magnetic compass to find birth beach

TECH SPACE
Livermore research finds early Mesoamericans affected by climate

Easter Island mystery

Australopithecus africanus: Strong hands for a precise grip

Did genetic links to modern maladies provide ancient benefits?

TECH SPACE
Picking up on the smell of evolution

The origin of life: Labyrinths as crucibles of life

Researchers identify natural plant compounds that work against insects

Blind beetles show extraordinary signs of sight

TECH SPACE
Scientists develop potential late-stage rabies treatment

H5N1 bird flu spreads to 11 states in Nigeria: govt

WHO says Ebola epidemic on the decline

Bird flu confirmed in Canadian patient after China trip

TECH SPACE
China surveying government suicides amid graft drive

China media vows punishment for dissenting Tibetan officials

China university 'expels student over genetic blood disease'

China has mountain to climb with 2022 Winter Olympics bid

TECH SPACE
China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

Nobel protester sought to draw attention to 'murdered Mexican students'

Corruption on rise in Turkey, China: Transparency

TECH SPACE
ECB QE could cause "competitive depreciation": China

China's economy not headed for 'hard landing': PM

China bank lending up in 2014 as govt seeks credit boost

China's economic growth slows to 24-year low: govt




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.