Subscribe free to our newsletters via your




FARM NEWS
Tiny genetic tweak unlocked corn kernels during domestication
by Staff Writers
Washington DC (SPX) Jul 14, 2015


Left: Teosinte ear; right: corn ear; center: ear from the first generation hybrid of a cross between teosinte and corn. Image courtesy John Doebley. For a larger version of this image please go here.

If not for a single genetic mutation, each kernel on a juicy corn cob would be trapped inside a inedible casing as tough as a walnut shell. The mutation switches one amino acid for another at a specific position in a protein regulating formation of these shells in modern corn's wild ancestor, according to a study published in the July 2015 issue of GENETICS, a publication of the Genetics Society of America.

"Humans completely reshaped the ancestor of corn, effectively turning the cob inside out. Our results show that a small genetic change has had a big effect on this remarkable transformation," says study leader John Doebley of the University of Wisconsin-Madison.

The domestication of corn has long fascinated biologists studying evolution. Corn can provide clues to how organisms change under selection -- whether it's natural selection or selection by humans choosing the most delicious and productive plants to grow in next year's crop.

Corn was domesticated in Mexico around 9,000 years ago from the wild grass teosinte. Teosinte seeds are protected by a hard casing that makes them impractical to eat, but ancient plant breeders developed varieties with "naked kernels." In these plants, the structures that form the seed case instead turn into the cob in the center of the ear, leaving the seed exposed for us to eat.

Besides having lost the inconvenient seed case, corn kernels today remain firmly attached to the cob, rather than scattering easily as they do in teosinte. The cobs are also much larger, and the corn plant has fewer leaf branches than its ancestor. Gene changes for these traits were discovered by Doebley and his colleagues over the past few decades.

All these changes evolved relatively quickly, within a few thousand years at most. Previous studies have shown that many of the dramatic differences between corn and teosinte were built on a foundation of genetic changes at perhaps as few as six genes.

One of those genes, tga1, controls formation of the seed case. The TGA1 protein encoded by the gene acts as a "master regulator" of a suite of other genes involved in this complex developmental process.

"TGA1 acts a bit like an orchestra conductor coordinating the actions of many different musicians," says Doebley. "The same orchestra can play in different ways, depending on the conductor's signals."

In teosinte, TGA1 regulates genes in a way that helps seed cases form. But in corn, TGA1 action disrupts this process, resulting in cases that are smaller and don't close over the kernel properly. But what exactly is different about the two versions of the tga1 gene?

To find out, the team compared the tga1 DNA sequence in 16 different varieties of corn and 20 varieties of teosinte. They discovered only one change present in all the corn samples but in none of the teosinte: at one particular position in the tga1 sequence, the corn version carried a "C" DNA base instead of the "G" found in teosinte. This single nucleotide difference causes one amino acid in the TGA1 protein to be switched from a lysine in teosinte to an asparagine in corn.

When the researchers tested the effect of this amino acid substitution on TGA1, they found that the corn version of the protein had a greater tendency to bind to itself in pairs of molecules called dimers. The genetic difference also seemed to turn TGA1 into a "repressor" of the genes it controls, decreasing their expression.

"In the conductor analogy, the teosinte TGA1 directs the orchestra to play loudly, but the corn TGA1 tells them to play a little softer--or in biochemical terms, the genes are repressed," says Doebley. This dampening of gene expression is enough to affect the structure of the seed case during development.

Consistent with this idea, the researchers found that turning down the volume on expression of the corn tga1 gene itself--which should relieve repression of the "orchestra" genes--enlarged the seed case remnants in corn. In other words, levels of the corn version of tga1 control the size of the corn structures that would normally form the seed case in teosinte. Doebley remarked that "the real credit goes to lead author, Huai Wang, for this series of brilliant experiments that solved a big problem in maize evolution."

These results provide an example of how selection by ancient plant breeders triggered profound structural change in an organism through relatively minor genetic alterations, allowing new traits to evolve rapidly. "Twenty years ago, it was much harder to study evolution in such detail. It's exciting that we can now understand complex examples like maize domestication at their most fundamental level," says Doebley.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Genetics Society of America
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Farming is driving force drying soil in Northern China
West Lafayette IN (SPX) Jul 14, 2015
An important agricultural region in China is drying out, and increased farming may be more to blame than rising temperatures and less rain, according to a study spanning 30 years of data. A research team led by Purdue University and China Agricultural University analyzed soil moisture during the growing season in Northern China and found that it has decreased by 6 percent since 1983. The o ... read more


FARM NEWS
Free meals offer comfort to Nepal quake victims

Nepal unveils subsidy-heavy $8.19 bn post-quake budget

S. Korea selects China consortium for Sewol ferry salvage

Global warming to fuel migration, terrorism: report

FARM NEWS
Russian, Chinese Navigation Systems to Accommodate BRICS Members

Russia, India Cooperate on Space Exploration, Glonass Satellite System

China's Beidou navigation system more resistant to jamming

Global Positioning System: A Generation of Service to the World

FARM NEWS
Continued destruction of Earth's plant life places humans in jeopardy

Indonesia jails orangutan trader caught with baby ape

Fossils indicate human activities have disturbed ecosystem resilience

Neuroscientists establish brain-to-brain networks in primates, rodents

FARM NEWS
Sri Lanka bans phones in safari park to save leopards

Deceptive flowers

Plant's sonar-bouncing leaves attract bats -- and their poo

The bizarre mating habits of flatworms

FARM NEWS
Algerian women with HIV suffer 'double punishment'

Study explains how dengue virus adapts as it travels

As blacklegged ticks migrate, Lyme disease follows

Scientists, feds aim to curb spread of brucellosis in Yellowstone

FARM NEWS
UN rights chief 'unprofessional' for law criticism: China

Tibetan monk dies in Chinese prison

China restricts passports for Tibetans: rights groups

China 'held 20' in South African charity group, several Britons

FARM NEWS
Piracy, other maritime crimes rise in Southeast Asia

Mexico army ordered soldiers to kill criminals: NGO

Malaysian navy shadows tanker, urges hijackers to give up

Polish bootcamp trains security contractors for mission impossible

FARM NEWS
China trade slumps in first half of year: government

Asia markets up as Europe leaders struggle for Greece deal

China's Q2 GDP growth beats forecasts as stimulus kicks in

China consumer inflation rate rises to 1.4% in June: govt




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.