Subscribe free to our newsletters via your




CHIP TECH
Toward quantum chips
by Staff Writers
Boston MA (SPX) Jan 13, 2015


File image.

A team of researchers has built an array of light detectors sensitive enough to register the arrival of individual light particles, or photons, and mounted them on a silicon optical chip. Such arrays are crucial components of devices that use photons to perform quantum computations.

Single-photon detectors are notoriously temperamental: Of 100 deposited on a chip using standard manufacturing techniques, only a handful will generally work. In a paper appearing today in Nature Communications, the researchers at MIT and elsewhere describe a procedure for fabricating and testing the detectors separately and then transferring those that work to an optical chip built using standard manufacturing processes.

In addition to yielding much denser and larger arrays, the approach also increases the detectors' sensitivity. In experiments, the researchers found that their detectors were up to 100 times more likely to accurately register the arrival of a single photon than those found in earlier arrays.

"You make both parts - the detectors and the photonic chip - through their best fabrication process, which is dedicated, and then bring them together," explains Faraz Najafi, a graduate student in electrical engineering and computer science at MIT and first author on the new paper.

Thinking small
According to quantum mechanics, tiny physical particles are, counterintuitively, able to inhabit mutually exclusive states at the same time. A computational element made from such a particle - known as a quantum bit, or qubit - could thus represent zero and one simultaneously. If multiple qubits are "entangled," meaning that their quantum states depend on each other, then a single quantum computation is, in some sense, like performing many computations in parallel.

With most particles, entanglement is difficult to maintain, but it's relatively easy with photons. For that reason, optical systems are a promising approach to quantum computation. But any quantum computer - say, one whose qubits are laser-trapped ions or nitrogen atoms embedded in diamond - would still benefit from using entangled photons to move quantum information around.

"Because ultimately one will want to make such optical processors with maybe tens or hundreds of photonic qubits, it becomes unwieldy to do this using traditional optical components," says Dirk Englund, the Jamieson Career Development Assistant Professor in Electrical Engineering and Computer Science at MIT and corresponding author on the new paper.

"It's not only unwieldy but probably impossible, because if you tried to build it on a large optical table, simply the random motion of the table would cause noise on these optical states. So there's been an effort to miniaturize these optical circuits onto photonic integrated circuits."

The project was a collaboration between Englund's group and the Quantum Nanostructures and Nanofabrication Group, which is led by Karl Berggren, an associate professor of electrical engineering and computer science, and of which Najafi is a member. The MIT researchers were also joined by colleagues at IBM and NASA's Jet Propulsion Laboratory.

Relocation
The researchers' process begins with a silicon optical chip made using conventional manufacturing techniques. On a separate silicon chip, they grow a thin, flexible film of silicon nitride, upon which they deposit the superconductor niobium nitride in a pattern useful for photon detection. At both ends of the resulting detector, they deposit gold electrodes.

Then, to one end of the silicon nitride film, they attach a small droplet of polydimethylsiloxane, a type of silicone. They then press a tungsten probe, typically used to measure voltages in experimental chips, against the silicone.

"It's almost like Silly Putty," Englund says. "You put it down, it spreads out and makes high surface-contact area, and when you pick it up quickly, it will maintain that large surface area. And then it relaxes back so that it comes back to one point. It's like if you try to pick up a coin with your finger. You press on it and pick it up quickly, and shortly after, it will fall off."

With the tungsten probe, the researchers peel the film off its substrate and attach it to the optical chip.

In previous arrays, the detectors registered only 0.2 percent of the single photons directed at them. Even on-chip detectors deposited individually have historically topped out at about 2 percent. But the detectors on the researchers' new chip got as high as 20 percent. That's still a long way from the 90 percent or more required for a practical quantum circuit, but it's a big step in the right direction.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Know when to fold 'em
Edmonton, Canada (SPX) Jan 11, 2015
For over a half-century, games have been test beds for new ideas in Artificial Intelligence (AI) and the resulting successes have marked significant milestones - Deep Blue defeated Kasparov in chess and Watson defeated Jennings and Rutter on Jeopardy! However, defeating top human players is not the same as actually solving a game, and for the first time researchers in the Computer Poker Re ... read more


CHIP TECH
Families of China stampede dead demand answers

Can quake-hit Haiti manufacture itself a hi-tech future?

Shanghai cancels lantern festival after stampede

World powers jostle for influence in AirAsia plane hunt

CHIP TECH
W3C and OGC to Collaborate to Integrate Spatial Data on the Web

AirAsia disappearance fuels calls for real-time tracking

Four Galileo satellites at ESA test centre

Russia to Debate US Discrimination of Glonass System in UN: Reports

CHIP TECH
No benefit from nutrient additions to water and energy drinks

Summer no sweat for Aussies but winter freeze fatal

Stress and social media: it's complicated

World's oldest butchering tools gave evolutionary edge to speech

CHIP TECH
Dinosaurs wiped out rapidly in Europe 66 million years ago

Evolution: Rock sponges split up

Swedish court gives green light to wolf hunters

An ecological rule for animals applies to flowers

CHIP TECH
Flu shot just 23 percent effective: US

UN Ebola czar says epidemic has 'passed the tipping point'

How to predict responses to disease

Hybrid 'super mosquito' resistant to insecticide-treated bed nets

CHIP TECH
China media: Zhou, Bo formed 'clique' to challenge leaders

China steps up political prosecutions: rights group

China linguist's 109th birthday wish: democracy

Fewer Chinese parents than expected seek 2nd children

CHIP TECH
China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

Nobel protester sought to draw attention to 'murdered Mexican students'

Corruption on rise in Turkey, China: Transparency

CHIP TECH
China bank lending up in 2014 as govt seeks credit boost

China December inflation rises to 1.5%: govt

Standard Chartered to axe further 2,000 jobs

China December manufacturing index at 49.6: HSBC




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.