Subscribe free to our newsletters via your




TECH SPACE
Ultrafast lasers offer 3-D micropatterning of biocompatible silk hydrogels
by Staff Writers
Somerville MA (SPX) Sep 25, 2015


Illustration of laser-based micropatterning of silk hydrogels. The transparent gels enable the laser's photons to be absorbed more than 10 times deeper than with other materials, without damaging the cells surrounding the "Tufts" pattern. Image courtesy M.B.

Tufts University biomedical engineers are using low-energy, ultrafast laser technology to make high-resolution, 3-D structures in silk protein hydrogels. The laser-based micropatterning represents a new approach to customized engineering of tissue and biomedical implants.

The work is reported in a paper in PNAS Early Edition published September 15 online before print: "Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds."

Artificial tissue growth requires pores, or voids, to bring oxygen and nutrients to rapidly proliferating cells in the tissue scaffold. Current patterning techniques allow for the production of random, micron-scale pores and the creation of channels that are hundreds of microns in diameter, but there is little in between.

The Tufts researchers used an ultrafast, femtosecond laser to generate scalable, high-resolution 3-D voids within silk protein hydrogel, a soft, transparent biomaterial that supports cell growth and allows cells to penetrate deep within it. The researchers were able to create voids at multiple scales as small as 10 microns and as large at 400 microns over a large volume.

Further, the exceptional clarity of the transparent silk gels enabled the laser's photons to be absorbed nearly 1 cm below the surface of the gel - more than 10 times deeper than with other materials, without damaging adjacent material.

The laser treatment can be done while keeping the cell culture sealed and sterile. Unlike most 3-D printing, this technique does not require photoinitiators, compounds that promote photoreactivity but are typically bio-incompatible.

"Because the femtosecond laser pulses allow us to target specific regions without any damage to the immediate surroundings, we can imagine using such micropatterning to controllably design around living cells, guide cell growth and create an artificial vasculature within an already densely seeded silk hydrogel," said senior author Fiorenzo G. Omenetto, Ph.D. Omenetto is associate dean for research, professor of biomedical engineering and Frank C. Doble professor at Tufts School of Engineering and also holds an appointment in physics in the School of Arts and Sciences.

The research team reported similar results in vitro and in a preliminary in vivo study in mice.

Other authors on the paper were Matthew B. Applegate, who led the experimental effort; Jeannine Coburn; Benjamin P. Partlow; Jodie E. Moreau; Jessica P. Mondia; Benedetto Marelli, and David L. Kaplan, all of the Department of Biomedical Engineering, Tufts University School of Engineering. Applegate M.B. (2015) "Laser-based 3-Dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds" PNAS Early Edition. 10.1073/pnas.1509405112.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Tufts University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
3-D printed guide helps regrow complex nerves after injury
Minneapolis MN (SPX) Sep 23, 2015
A national team of researchers has developed a first-of-its-kind, 3D-printed guide that helps regrow both the sensory and motor functions of complex nerves after injury. The groundbreaking research has the potential to help more than 200,000 people annually who experience nerve injuries or disease. Collaborators on the project are from the University of Minnesota, Virginia Tech, University ... read more


TECH SPACE
Iraqis buy life jackets for trip to Europe's distant shores

Fukushima disaster was preventable

Nepal quake survivors turn porters to deliver aid

Summer of bloodshed as US murder rates rise

TECH SPACE
Battery-free smart camera nodes determine own pose and location

Galileo taking flight: ten satellites now in orbit

Europe launches satnav orbiters

Soyuz ready for liftoff with two Galileo satellites

TECH SPACE
Targeted Electrical Stimulation of the Brain Shows Promise as a Memory Aid

Scientists report earlier date of shift in human ancestors' diet

Fossil trove adds a new limb to human family tree

Bonobos use finger-pointing, hand gestures to communicate

TECH SPACE
As wildland-urban interface grows, so does risk to people and habitats

Tech for tuskers: protecting Africa's elephants with Google

There is strength in diversity!

Sponge cells build skeletons with pole-and-beam structure

TECH SPACE
This year's flu vaccine better than last year: US

New Ebola death in SLeone dims optimism for epidemic's end

Preemptive drug should be routine in AIDS fight: study

US Army orders lab safety review, freeze in anthrax scandal

TECH SPACE
China party mouthpiece lashes out at Asia's richest man

Diplomacy is child's play for China's underage welcome party

Chinese dissident artist Ai Weiwei opens major London show

Russia draws in hordes of Chinese with 'red tourism'

TECH SPACE
Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

Kenya's 'ivory kingpin' bail suspended

Rio airport agents bribed in Chinese immigrant scandal

TECH SPACE
China factories slow again: survey

ADB revises down regional growth as China and India slow

Goldman Sachs chief 'would not invest in China'

China premier urges state sector reform




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.