Subscribe free to our newsletters via your




TECH SPACE
Using ultrathin sheets to discover new class of wrapped shapes
by Staff Writers
Amherst MA (SPX) Sep 02, 2015


UMass Amherst materials researchers recently proposed and validated a model of wrapped shapes used to encapsulate one fluid droplet within another. Shown is a 39 nm sheet, radius 1.52 mm, and water drop in silicone oil floating on fluorinated oil. Image courtesy UMass Amherst/Joseph Paulsen. For a larger version of this image please go here.

Materials scientists seeking to encapsulate droplets of one fluid within another often use molecules like soap or micro- or nano-particles to do it. One distinct way of wrapping a droplet is to use a thin sheet that calls on capillary action to naturally wrap a droplet in a blanket of film, but because it takes some force to bend a sheet around a drop, there were thought to be limits on what can be accomplished by this process.

Now, experimental and theoretical physicists and a polymer scientist at the University of Massachusetts Amherst have teamed up to use much thinner sheets than before to achieve this wrapping process. Thinner, highly-bendable sheets lift these constraints and allow for a new class of wrapped shapes, says experimental physicist Narayanan Menon.

Such wrapping techniques could be used to contain toxic or corrosive liquids, to physically isolate a delicate liquid cargo or to shrink-wrap drops, he points out. Details appear in an early online edition of Nature Materials.

The team is made up of experimental physicists Menon and postdoctoral researcher Joseph Paulsen, theoretical physicists Vincent Demery, Benjamin Davidovitch and Christian Santangelo, and polymer scientist Thomas Russell.

Paulsen devised a process in which a circular flat sheet is placed on a drop, which is completely wrapped by the sheet as the droplet's volume is gradually decreased by withdrawing fluid with a thin straw. Small-scale wrinkles and crumples allow the sheet to curve around the droplet as it wraps.

Surprisingly, using a very thin skin to wrap a drop leads to non-spherical shapes, whereas one might have imagined that the sheet would simply conform to the spherical shape of the drop. "These non-spherical shapes are reminiscent of foods in which a filling is wrapped inside a sheet of pastry or dough, such as a samosa, an empanada or a dumpling," says Menon.

The theorists developed a general model that explains "all the observed partially and fully wrapped shapes purely geometrically, independent of material parameters, in a regime of thickness that often occurs in nature and is easily achieved in technological settings."

They point out that "Wrinkles, fold and crumples are challenging to understand on their own, let alone when they interact in a highly-curved geometry. However, we show that the essence of the wrapping process can be understood without describing any small-scale features," the authors point out. Paulsen adds, "We've shown that for very thin sheets, you can ignore the complicated small-scale features and still predict the overall three-dimensional shape of the wrapping."

This advance, funded by the Keck Foundation, brings three major technical advantages. First, when ultrathin sheets are used as wrappers, they spontaneously select a method of wrapping that wastes the least amount material in wrapping up a given volume of fluid. "This corresponds to satisfying the goal of everyone who has wrapped a gift using the least amount of wrapping paper possible," he says.

Second, energies at the droplet-wrapper interface and mechanical properties of the sheet are irrelevant in the new model, which allows greater functionality, the authors point out. Greater functionality in this case means that if you want to use a sheet with different properties, say different color, chemistry or something with holes on it, this process is not disrupted, the physicist explains.

Finally, complete coverage of the fluid can be achieved without special sheet designs, the researchers say. Menon adds, "Special sheet designs are possible, but if you are trying to do this on a large scale, then it is tedious to make sheets that are cut in some complicated way so they can fold up easily. Thin enough sheets automatically wrinkle and fold in such a way that you don't need to cut them up."

Paulsen says, "We expect our findings to be useful in applications where a liquid cargo needs to be protected in a solid barrier. Our main focus was on shape, but we expect these wrapped droplets to have interesting mechanical properties as well."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Massachusetts at Amherst
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Combined disciplines, computational programs determine atomic structure
Chicago IL (SPX) Aug 27, 2015
A team from the University of Illinois at Urbana-Champaign and Indiana University combined two techniques to determine the structure of cyanostar, a new abiological molecule that captures unwanted negative ions in solutions. When Semin Lee, a chemist and Beckman Institute postdoctoral fellow at Illinois, first created cyanostar at Indiana University, he knew the chemical properties, but co ... read more


TECH SPACE
France cash pledge for persecuted Mideast minorities

Hungary Defence Minister quits amid migration crisis

China outrage after officials say blast relatives 'calm'

Japan lifts evacuation order for radiation-hit Fukushima town

TECH SPACE
Soyuz ready for liftoff with two Galileo satellites

Soyuz set to launch 2 Galileo navigation satellites

China Deploys New Security System to Ensure Safety at Military Parade

Mission team ready for Galileo launch

TECH SPACE
Did grandmas make people pair up?

New film aims to capture 'Human' experience

Largest-yet monument unearthed at Stonehenge

US Catholics mostly accepting of non-traditional families

TECH SPACE
Common molecular tool kit shared by organisms across the tree of life

Before nature selects, gene networks steer a course for evolution

Indian elephant tramples Chinese man to death: police

Green sea turtles set nesting record in Florida

TECH SPACE
US Army orders lab safety review, freeze in anthrax scandal

New Ebola death in Sierra Leone sets back efforts to beat epidemic

Pneumonic plague kills eight in Madagascar

WHO to study use of sanctions as part of global epidemic response

TECH SPACE
China says Tibet Lama appointee missing for 20 years 'living normally'

China's government to 'manage' public dancing: Xinhua

You give music a bad name: Bon Jovi China gigs cancelled

After China escape, painful memories remain for blind activist

TECH SPACE
Army's role questioned in missing Mexican students case

Kenya's 'ivory kingpin' bail suspended

Rio airport agents bribed in Chinese immigrant scandal

All bets are off inside Laos' jungle sin city

TECH SPACE
EU businesses warn China over 'slow' reforms

China cuts 2014 GDP growth: govt

US presses China over currency as G20 seeks to calm nerves

G20 seeks to smooth economic shock waves from China




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.