Subscribe free to our newsletters via your




WATER WORLD
Weathering and river discharge surprisingly constant during Ice Age cycles
by Staff Writers
Stanford CA (SPX) Jun 15, 2015


A satellite image of Alaska shows alluvial fans created by melting glaciers draining into the Copper River. Image courtesy NASA. For a larger version of this image please go here.

Over geologic time, the work of rain and other processes that chemically dissolve rocks into constituent molecules that wash out to sea can diminish mountains and reshape continents. Scientists are interested in the rates of these chemical weathering processes because they have big implications for the planet's carbon cycle, which shuttles carbon dioxide between land, sea, and air and influences global temperatures.

A new study, published online in the journal Nature Geoscience, by a team of scientists from Stanford and Germany's GFZ Research Center for Geosciences reveals that, contrary to expectations, weathering rates over the past 2 million years do not appear to have varied significantly between glacial and interglacial periods.

Scientists expect weathering rates to slow down during Earth's ice ages because temperatures were lower, and as a consequence much of the water that might fall as rain is trapped as ice in glaciers blanketing Europe and North America.

"If you look at how these attributes of climate control weathering rates today, you would expect that weathering and sedimentation rates can vary widely between glacial to interglacial times," said study author Friedhelm von Blanckenburg, a geochemist at the German Research Centre for Geosciences GFZ Potsdam.

For example, North America's Sierra Nevada mountain range is pockmarked by U-shaped valleys that were carved out by ice sheets during their relentless march southward in glacial times. When temperatures warmed, the ice sheets retreated, exposing pulverized rocks in the crater that could be easily weathered and transported out to sea by rivers and streams.

Even in regions not covered by glaciers, scientists know that rainfall changed between glacial and interglacial times. Studies of now-dry lakebeds that once dotted the western U.S. and cone-shaped sedimentation deposits, called alluvial fans, from ancient rivers suggest water flow varied widely as temperature and rainfall patterns waxed and waned between ice ages and the warmer periods that followed.

But all of these lines of evidence testified only to local variations of weathering and sedimentation rates. "If you want to know the global weathering rate," von Blanckenburg said, "you have to go to the oceans, where local variations rates are averaged out."

von Blanckenburg and his colleague, Julien Bouchez, a research scientist at the Global Institue of Physics in Paris, turned to a geochemical technique that compares the concentration of two forms, or isotopes, of the element beryllium (Be). 9Be is found naturally in silicate rocks on Earth; 10Be is a radioactive cosmogenic isotope produced by the collision of cosmic rays with nitrogen and oxygen molecules in the atmosphere.

"Because 10Be rains down onto Earth's continents and oceans at more or less a constant rate, it's like a clock that can be used to time processes," von Blanckenburg said. "9Be, on the other hand, can be used to calculate how much dissolved rock has washed into the oceans from rivers."

By determining the ratio of 10Be to 9Be in marine sediment layers, von Blanckenburg was able to reconstruct the weathering flux for nearly the entire Quaternary Period, a timespan encompassing 2.6 million years. To his surprise, he found that there was little change between glacial and interglacial periods.

To understand why, von Blanckenburg teamed up with Stanford researchers Kate Maher, an assistant professor of geological sciences, and graduate student Daniel Ibarra, who specialize in using computer models to understand how the flow of water controls weathering. Maher and Ibarra compiled data about river-to-ocean flow from an ensemble of climate models and calculated the average discharge from rivers at different latitudes during glacial and interglacial times.

The Stanford scientists reached the same conclusion that von Blanckenburg and Bouchez did using their beryllium ratio observations. "Our results suggested that globally the aggregate change in discharge from all the rivers was effectively zero between the glacial and interglacial times. That was surprising," Maher said.

The models offered a likely explanation for this: they showed that while the change in water discharge for rivers at higher latitudes in the northern hemisphere could vary wildly between glacial and interglacial times, the flux for rivers in the tropics-which remained temperate even during ice ages-did not change by more than a few percent.

"The tropics account for more than half of the river runoff globally, so they strongly moderate chemical weathering fluxes during global shifts in climate," Ibarra said. "Because weathering helps balance the global carbon cycle, that means the tropical weathering is a primary driver of atmospheric CO2 levels over very long time scales."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford's School of Earth, Energy and Environmental Sciences
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Scientists solve Washington's milky rain puzzle
Pullman, Wash. (UPI) Jun 10, 2015
In early February, parts of the Pacific Northwest experienced what was described as "milky rain," precipitation characterized by suspended silty particulates. Once evaporated, the rain left behind a chalky residue. The milk rain befuddled local meteorologists - though that didn't stop them from offering a range of theories. But now scientists have an official explanation for, or ... read more


WATER WORLD
Long, hard road for Nepal's disabled quake survivors

No charges as Israel closes probe into deadly Gaza beach bombing

Japan body searchers return to volcano, eight months on

Nepal parties reach long-awaited charter deal after quake

WATER WORLD
Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

GLONASS to Go on Stream in 2015

Satellites make a load of difference to bridge safety

Advanced Navigation Releases Interface and Logging Unit

WATER WORLD
Manuela's Madrid: a pretty, gritty city

Technology offers bird's-eye view of foreclosure affects on landscape

Chimpanzee flexibly use facial expressions and vocalizations

Cooking up cognition

WATER WORLD
Study details evolution of funnel-web spider venom

Dozens of penguins wash up dead on coast of Uruguay

Small molecules change biological clock rhythm

A small vortex on the wing makes the elegance of birds' flight

WATER WORLD
US anthrax samples shipped to Japan in 2005: Pentagon

Virus evolution and human behavior shape global patterns of flu movement

Woman isolated in Hong Kong hospital over MERS

HIV's sweet tooth is its downfall

WATER WORLD
How the mighty are fallen: selfies and smiles in Zhou village

China's Panchen Lama meets Xi, calls for 'national unity'

China sees backlash to graft-busting 'tiger' hunt: analysts

China cites 'tremendous' human rights progress in report

WATER WORLD
Polish bootcamp trains security contractors for mission impossible

A blast and gunfire: Mexico's chopper battle

WATER WORLD
HSBC unveils radical overhaul to axe up to 50,000 jobs

China economy shows more weakness as imports, exports fall

China manufacturing index at six-month high but strains remain

Bernanke blames Congress as China flexes economic muscles




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.