Subscribe free to our newsletters via your




ENERGY TECH
Wild molecular interactions in a new hydrogen mixture
by Staff Writers
Washington DC (SPX) Oct 21, 2014


Ilustration only.

Hydrogen-the most abundant element in the cosmos-responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure increases, the molecules adopt different states of matter-like when water ice melts to liquid and then heats to steam.

Thus far, at extreme pressures hydrogen has four known solid phases. Now scientists, including Carnegie's Alexander Goncharov, have combined hydrogen with its heavier sibling deuterium-which has an added neutron in its nucleus-and created a novel, disordered, "Phase IV"-material where the molecules interact differently than have been observed before.

The new results, published in Physical Review Letters, could be valuable for controlling superconducting and thermoelectric properties of novel hydrogen- bearing materials.

Phase IV of dense, solid, pure hydrogen (H2) and deuterium (D2) was previously discovered by several members of the same team and others. The hydrogen molecules exhibited two very different behaviors.

One weakly interacted with its neighboring molecules, while the other strongly bonded with its neighbors, forming hexagonal atomic sheets like graphene, a novel truly two-dimensional form of carbon with fascinating electronic properties. Electronically, these layers behave somewhat like a semiconductor and a semimetal. Semimetals are in between metals and semiconductors with respect to their electronic properties.

This team, led by Ross Howie of the University of Edinburgh, combined experiments and theoretical calculations. They mixed the H2 and D2 in varying concentrations and subjected them to room temperature under different pressures, ranging from about 2,000 times atmospheric pressure (.2 GPa) to about 2.7 million atmospheres (270 GPa).

Goncharov explained: "Before conducting the experiments, we thought that the material could change under pressure by several different processes. The mass differences of the molecules mean that they have very different low energy states, which would affect the outcome. In one scenario, the physics could result in the ordered segregation of the H2 and D2 molecules between strongly and weakly bounded layers."

Under another scenario, the molecules might be randomly, or disorderly, distributed. Then there is another intriguing prospect they entertained-whether the disordered state affects the waves of atomic vibrations (called phonons) and prevents them from freely propagating, a phenomenon called Anderson localization.

Typically, electrons in solids have energy values only within certain ranges. The scientists thought that vibrational wave propagation through a molecular maze might break this energy band depending on the strength of the molecular bonds, the masses, or both, and could affect just a few, local molecules.

The scientists used a technique called Raman spectroscopy, which measures the tiny quantum behavior of vibrational energy, rotational energy, and other motion in a molecular system when a laser light interacts with the molecules. They then confirmed their experiments with theoretical calculations.

The scientists found that above 1.9 million atmospheres, the vibrational waves show Anderson localization. The extent of this localization depends on the concentration of H2 and D2 and whether these molecules belong to weakly or strongly bound layers.

For instance in one layer, H2 molecules vibrated in separate groups of 2 to 3 molecules at frequencies that weakly depended on the neighboring environment. As the hydrogen concentration increased, the different H2 clusters grew and started to couple. This is the first study where Anderson localization from vibrational energy has been observed by interacting with mass differences in a material.

Goncharov remarked, "The Anderson localization of vibrational excitations in hydrogen mixtures provides a new mechanism for optimizing thermoelectric and electronic behaviors, for example in superconductivity."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Carnegie Institution
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Brighter energy-saving flat panels using carbon nanotubes
Washington DC (SPX) Oct 17, 2014
Even as the 2014 Nobel Prize in Physics has enshrined light emitting diodes (LEDs) as the single most significant and disruptive energy-efficient lighting solution of today, scientists around the world continue unabated to search for the even-better-bulbs of tomorrow. Enter carbon electronics. Electronics based on carbon, especially carbon nanotubes (CNTs), are emerging as successors ... read more


ENERGY TECH
British police pay mother of spy's child

Philippines' Aquino criticises typhoon rebuilding delays

Natural disasters killed over 22,000 in 2013: Red Cross

Rescuers airlift 154 to safety after deadly Nepal storm

ENERGY TECH
Russian Bank Offers 5 Billion Rubles for GLONASS

Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

ISRO to Launch India's Third Navigation Satellite on October 16

ENERGY TECH
Death and social media: what happens next

Highest altitude ice age human occupation documented in Peruvian Andes

Parts of UK 'under siege' from immigration: defence minister

Reducing population is no environmental quick fix

ENERGY TECH
How ferns adapted to one of Earth's newest and most extreme environments

Florida lizards evolve rapidly, within 15 years and 20 generations

Study uses DNA sequences to look back in time at plant evolution

Using microscopic bugs to save the bees

ENERGY TECH
New commander takes over US Ebola mission in West Africa

Visiting US envoy condemns response to Ebola epidemic

Evolutionary roots of Ebola more ancient than previously thought

Is there a way out of the Ebola epidemic

ENERGY TECH
China plans to scrap death penalty for 9 crimes: Xinhua

Cultural Revolution evoked with China mass sentencing

UN rights chief says in talks with China on Tibet visit

China's Xi echoes Mao on the arts: state media

ENERGY TECH
Hijacked Singaporean ship released near Nigeria: Seoul

ENERGY TECH
Firm in China's first bond default to be restructured

China economic growth falls to five-year low of 7.3%: govt

Australia poised to seize assets of corrupt Chinese: report

How Germany and the euro are keeping Europe in recession




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.