. Medical and Hospital News .




.
INTERN DAILY
Cancer Treatment Delivery
by Tara Ruttley, Ph.D., Space Station Program Scientist
Houston TX (SPX) May 14, 2012

Microencapsulation containing anti-tumor drugs made on the space station. (NASA).

Humanity is on the constant search for improvements in cancer treatments, and the International Space Station has provided a microgravity platform that has enabled advancements in the cancer treatment process.

The oncology community has a recent history of using different microencapsulation techniques as an approach to cancer treatment. Microencapsulation is a single step process that forms tiny liquid-filled, biodegradable micro-balloons containing various drug solutions that can provide better drug delivery and new medical treatments for solid tumors and resistant infections.

In other words, by using microcapsules containing antitumor treatments and visualization markers, the treatment can be directed right to the tumor, which has several benefits over systemic treatment such as chemotherapy.

Testing in mouse models has shown that these unique microcapsules can be injected into human prostate tumors to actually inhibit tumor growth or can be injected following cryo-surgery (freezing) to improve the destruction of the tumors much better than freezing or local chemotherapy alone.

The microcapsules also contain a contrast agent that enables C-T, X-ray or ultrasound imaging to monitor the distribution within the tissues to ensure that the entire tumor is treated when the microcapsules release their drug contents.

The Microencapsulation Electrostatic Processing System-II experiment, or MEPS-II, led by Dennis Morrison, Ph.D. (retired), at NASA Johnson Space Center, was performed on the station in 2002 and included innovative encapsulation of several different anti-cancer drugs, magnetic triggering particles, and encapsulation of genetically engineered DNA.

The experiment system improved on existing microencapsulation technology by using microgravity to modify the fluid mechanics, interfacial behavior, and biological processing methods as compared to the way the microcapsules would be formed in gravity.

In effect, the MEPS-II system on the station combined two immiscible liquids in such a way that surface tension forces (rather than fluid shear) dominated at the interface of the fluids. The significant performance of the space-produced microcapsules as a cancer treatment delivery system motivated the development of the Pulse Flow Microencapsulation System, or PFMS, which is an Earth-based system that can replicate the quality of the microcapsules created in space.

As a result of this space station research, the results from the MEPS-II experiments have provided new insight into the best formulations and conditions required to produce microcapsules of different drugs, particularly special capsules containing diagnostic imaging materials and triggered release particles.

Co-encapsulation of multiple drugs and Photodynamic Therapy, or PDT, drugs has enabled new engineering strategies for production of microcapsules on Earth designed for direct delivery into cancer tissues. Other microcapsules have now been made for treatment of deep tissue infections and clotting disorders and to provide delivery of genetically engineered materials for potential gene therapy strategies.

Microcapsules that were made on the space station and are targeted at inhibiting the growth of human prostate tumors have been successfully demonstrated in laboratory settings.

Although Morrison's team had performed several similar microencapsulation experiments on space shuttle missions, because of the space station's ability to support long-term experiments, more progress was made by the eight microencapsulation experiments conducted on the station in 2002 than from the 60+ prior experiments conducted on the four space shuttle missions - STS-77, STS-80, STS-95 and STS 107.

Benefits of Space Station Research
The microgravity environment on the station was an enabling environment that led the way to better methods of microcapsule development on Earth. The capability to perform sequential microencapsulation experiments on board the station has resulted in new, Earth-based technology for making these unique microballoons that provide sustained release of drugs over a 12-14 day period.

The station research led directly to five U.S. patents that have been licensed by NASA and two more that are pending. NuVue Therapeutics, Inc., is one of several commercial companies that have licensed some of the MEPS technologies and methods to develop new applications, such as innovative ultrasound enhanced needles and catheters that will be used to deliver the microcapsules of anti-tumor drugs directly to tumor sites.

More recent research uses a new device for freezing tumors ("cryo-ablation") followed by ultrasound-guided deposition of the multi-layered microcapsules containing different chemotherapy drugs outside the freeze zone within a human prostate or lung tumor.

In a 28-day study, combination therapy resulted in retarding tumor growth 78 percent and complete tumor regression of up to 30 percent after only three weekly injections of microencapsulated drug at tiny quantities that should not have slowed down tumor growth by more than 5-10 percent.

NuVue Technologies, Inc., has now obtained two U.S. patents based on the combination therapy that includes the delivery of the NASA-type microcapsules. Upon securing funding, clinical trials to inject microcapsules of anti-tumor drugs directly into tumor sites will begin at MD Anderson Cancer Center in Houston and the Mayo Cancer Center in Scottsdale, Ariz.

Other potential uses of this microencapsulation technology include microencapsulation of genetically engineered living cells for injection or transplantation into damaged tissues, enhancement of human tissue repair, and real-time microparticle analysis in flowing sample streams that would allow petrochemical companies to monitor pipeline volume flow.

Related Links
Johnson Space Center
Hospital and Medical News at InternDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



INTERN DAILY
Hip implant for long-term use
Stuttgart, Germany (SPX) May 11, 2012
Hip replacement is one of the most frequent operations carried out in Germany. Each year, doctors implant some 200,000 artificial hip joints. Often the artificial hips need to be replaced just ten years later. In the future, a new implant currently being developed using high technology materials could help prevent premature revision surgeries. Thanks to artificial hips, people with irrepar ... read more


INTERN DAILY
Economists list cheapest ways to save the world

2012 not end of world for Mayans after all

Japan to take control of Fukushima operator TEPCO

Munich Re reports return to profit after tsunami blow

INTERN DAILY
S. Korea to urge N. Korea to stop GPS jamming

Next Galileo satellites to launch after the summer

Czech Republic approves EU Galileo agency move to Prague

China launches two navigation satellites

INTERN DAILY
Anthropologist finds explanation for hominin brain evolution in famous fossil

Extra gene drove instant leap in human brain evolution

Tablet in Turkey contains unknown language

Scripps Research Institute scientists show how a gene duplication helped our brains become 'human'

INTERN DAILY
One Quarter Of Grouper Species Being Fished To Extinction

Feeding without the frenzy

Keeping immune cells alive and kicking

UCLA scientists unlock mystery of how 'handedness' arises

INTERN DAILY
Botswana makes new pitch for circumcision in AIDS fight

HIV/AIDS patients at higher risk of cardiac death: study

Advanced genetic screening method may speed vaccine development

African scientist, designer partner to fashion anti-malaria garment that wards off bugs

INTERN DAILY
Economic growth sows unhappiness in China

Dalai Lama collects $1.8 mn prize after meeting Cameron

Blind China activist says nephew targeted

China moves Mongol dissident to 'luxury resort'

INTERN DAILY
Ship guards trigger clashes with pirates

War planes strike suspected Somali pirate base: coastguard

India proposes norms for Indian Ocean anti-piracy patrols

Iran navy rescues China crew from hijacked freighter

INTERN DAILY
Europe debt crisis biggest risk for Japan economy: PM

Asia safe from Europe woes, no China hard landing: Fitch

China's output growth at near three-year low

China says inflation eases slightly in April


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement