. Medical and Hospital News .

Cartilage made easy with novel hybrid printer
by Staff Writers
London, UK (SPX) Nov 22, 2012

Electrospinning allows the composition of polymers to be easily controlled and therefore produces porous structures that encourage cells to integrate into surrounding tissue.

The printing of three-dimensional tissue has taken a major step forward with the creation of a novel hybrid printer that simplifies the process of creating implantable cartilage. The printer has been presented in IOP Publishing's journal Biofabrication, and was used to create cartilage constructs that could eventually be implanted into injured patients to help re-grow cartilage in specific areas, such as the joints.

The printer is a combination of two low-cost fabrication techniques: a traditional ink jet printer and an electrospinning machine.

Combining these systems allowed the scientists to build a structure made from natural and synthetic materials. Synthetic materials ensure the strength of the construct and natural gel materials provide an environment that promotes cell growth.

In this study, the hybrid system produced cartilage constructs with increased mechanical stability compared to those created by an ink jet printer using gel material alone. The constructs were also shown to maintain their functional characteristics in the laboratory and a real-life system.

The key to this was the use of the electrospinning machine, which uses an electrical current to generate very fine fibres from a polymer solution.

Electrospinning allows the composition of polymers to be easily controlled and therefore produces porous structures that encourage cells to integrate into surrounding tissue.

"This is a proof of concept study and illustrates that a combination of materials and fabrication methods generates durable implantable constructs," said James Yoo, M.D., Ph.D., Professor at the Wake Forest Institute for Regenerative Medicine, and an author on the study.

"Other methods of fabrication, such as robotic systems, are currently being developed to further improve the production of implantable tissue constructs."

In this study, flexible mats of electrospun synthetic polymer were combined, layer-by-layer, with a solution of cartilage cells from a rabbit ear that were deposited using the traditional ink jet printer. The constructs were square with a 10cm diagonal and a 0.4mm thickness.

The researchers tested their strength by loading them with variable weights and, after one week, tested to see if the cartilage cells were still alive.

The constructs were also inserted into mice for two, four and eight weeks to see how they performed in a real life system. After eight weeks of implantation, the constructs appeared to have developed the structures and properties that are typical of elastic cartilage, demonstrating their potential for insertion into a patient.

The researchers state that in a future scenario, cartilage constructs could be clinically applied by using an MRI scan of a body part, such as the knee, as a blueprint for creating a matching construct.

A careful selection of scaffold material for each patient's construct would allow the implant to withstand mechanical forces while encouraging new cartilage to organise and fill the defect.


Related Links
Institute of Physics
Hospital and Medical News at InternDaily.com

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


Simplifying Heart Surgery with Stretchable Electronic Devices
Chicago IL (SPX) Nov 20, 2012
Researchers at the McCormick School of Engineering are part of a team that has used stretchable electronics to create a multipurpose medical catheter that can both monitor heart functions and perform corrections on heart tissue during surgery. The device marks the first time stretchable electronics have been applied to a surgical process known as cardiac ablation, a milestone that could lead to ... read more

Victims of Hurricane Sandy forgotten in Haiti

Post-storm, New Yorkers love Bloomberg - and Chris Christie

UN agency faces aid deficit ahead of Madagascar storms

European reconstruction bank admits Kosovo

Mobile GPS Tracking capability on JCB ruggedized mobile phones

Quattro Group Gains Visibility And Control With Ctrack

Saudi Arabia to Launch Two Satellites

Nokia buys 3D mapping firm in location services push

A 3-D light switch for the brain

Scientists improve dating of early human settlement

Archaeologists identify spear tips used in hunting a half-million years ago

Oldest home in Scotland unearthed

Singapore gets dolphins after tussle with activists

Ecuador's Lonesome George wasn't lonely after all

S.Africa rhino toll jumps as poachers kill 7 in attack

Research finds evidence of a 'mid-life crisis' in great apes

G.Bissau warns AIDS patients without treatment since coup

UN hails sharp decline in HIV infections in kids

Baiting Mosquitoes with Knowledge and Proven Insecticides

Scientists question the designation of some emerging diseases

China names new leaders for Shanghai, Chongqing

China angst over runaway boys' deaths

Two detained in China for 'inciting unrest' online

Two more Tibetans in China self-immolate: reports

Piracy will swell again if seas not policed: S.African Navy

Mekong River attackers get death sentences

West African pirates target oil tankers

Pirate killed off Somali coast: NATO

BoJ chief slaps down would-be PM's challenge

China manufacturing grows in November: HSBC

Foreign investment in China drops in October

China says US overtakes EU as its top export market

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement