. Medical and Hospital News .

DNA prefers to dive head first into nanopores
by Staff Writers
Providence RI (SPX) Jan 10, 2013

When a DNA strand is captured and pulled through a nanopore, it's much more likely to start the journey at one of its ends (top left) rather than being grabbed somewhere in the middle and pulled through in a folded configuration. Credit: Stein lab/Brown University.

If you want to understand a novel, it helps to start from the beginning rather than trying to pick up the plot from somewhere in the middle. The same goes for analyzing a strand of DNA. The best way to make sense of it is to look at it head to tail.

Luckily, according to a new study by physicists at Brown University, DNA molecules have a convenient tendency to cooperate.

The research, published in the journal Physical Review Letters, looks at the dynamics of how DNA molecules are captured by solid-state nanopores, tiny holes that soon may help sequence DNA at lightning speed.

The study found that when a DNA strand is captured and pulled through a nanopore, it's much more likely to start the journey at one of its ends, rather than being grabbed somewhere in the middle and pulled through in a folded configuration.

"We think this is an important advance for understanding how DNA molecules interact with these nanopores," said Derek Stein, assistant professor of physics at Brown, who performed the research with graduate student Mirna Mihovilovic and undergraduate Nick Hagerty. "If you want to do sequencing or some other analysis, you want the molecule going through the pore head to tail."

Research into DNA sequencing with nanopores started a little over 15 years ago. The concept is fairly simple. A little hole, a few billionths of a meter across, is poked in a barrier separating two pools of salt water.

An electric current is applied across the hole, which occasionally attracts a DNA molecule floating in the water. When that happens, the molecule is whipped through the pore in a fraction of a second. Scientists can then use sensors on the pore or other means to identify nucleotide bases, the building blocks of the genetic code.

The technology is advancing quickly, and the first nanopore sequencing devices are expected to be on the market very soon. But there are still basic questions about how molecules behave at the moment they're captured and before.

"What the molecules were doing before they're captured was a mystery and a matter of speculation," Stein said. "And we'd like to know because if you're trying to engineer something to control that molecule - to get it to do what you want it to do - you need to know what it's up to."

To find out what those molecules are up to, the researchers carefully tracked over 1,000 instances of a molecule zipping through a nanopore. The electric current through the pore provides a signal of how the molecule went through. Molecules that go through middle first have to be folded over in order to pass.

That folded configuration takes up more space in the pore and blocks more of the current. So by looking at differences in the current, Stein and his team could count how many molecules went through head first and how many started somewhere in the middle.

The study found that molecules are several times more likely to be captured at or very near an end than at any other single point along the molecule.

"What we found was that ends are special places," Stein said. "The middle is different from an end, and that has a consequence for the likelihood a molecule starts its journey from the end or the middle."

Always room for Jell-O
As it turns out, there's an old theory that that explains these new experimental results quite well. It's the theory of Jell-O.

Jell-O is a polymer network - a mass of squiggly polymer strands that attach to each other at random junctions. The squiggly strands are the reason Jell-O is a jiggly, semi-solid.

The way in which the polymer strands connect to each other is not unlike the way a DNA strand connects to a nanopore in the instant it's captured. In water, DNA molecules are jumbled up in random squiggles much like the gelatin molecules in Jell-O.

"There's some powerful theory that describes how many ways the polymers in Jell-O can arrange and attach themselves," Stein said. "That turns out to be perfectly applicable to the problem of where these DNA molecules get captured by a nanopore."

When applied to DNA, the Jell-O theory predicts that if you were to count up all the possible configurations of a DNA strand at the moment of capture, you would find that there are more configurations in which it is captured by its end, compared to other points along the strand.

It's a bit like the odds of getting a pair in poker compared to the odds of getting three of a kind. You're more likely to get a pair simply because there are more pairs in the deck than there are triples.

This measure of all the possible configurations - a measure of what physicists refer to as the molecule's entropy - is all that's needed to explain why DNA tends to go head first. Some scientists had speculated that perhaps strands would be less likely to go through by the middle because folding them in half would require extra energy. But that folding energy appears not to matter at all.

As Stein puts it, "The number of ways that a molecule can find itself with its head sticking in the pore is simply larger than the number of ways it can find itself with the middle touching the pore."

These theories of polymer networks have actually been around for a while. They were first proposed by the late Nobel laureate Pierre-Gilles de Gennes in the 1960s, and Bertrand Duplantier made key advances in the 1980s. Mihovilovic, Stein's graduate student and the lead author of this study, says this is actually one of the first lab tests of those theories.

"They couldn't be tested until now, when we can actually do single molecule measurements," she said. "[De Gennes] postulated that one day it would be possible to test this. I think he would have been very excited to see it happen."


Related Links
Brown University
Hospital and Medical News at InternDaily.com

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


When will genomic research translate into clinical care - and at what cost?
Boston MA (SPX) Jan 09, 2013
Genomic research is widely expected to transform medicine, but progress has been slower than expected. While critics argue that the genomics "promise" has been broken - and that money might be better spent elsewhere - proponents say the deliberate pace underscores the complexity of the relationship between medicine and disease and, indeed, argues for more funding. But thus far, these compe ... read more

Obama signs $9.7 bn aid bill for Sandy victims

Obama considers broad arms sales restrictions: report

Fukushima 'unprecedented challenge': new Japan PM

Natural catastrophes caused $160 bn in damage: Munich Re

New location system could compete with GPS

Beidou's unique services attractive to Chinese companies

China eyes greater market share for its GPS rival

Researchers told to ward off navigation system interference

Promising compound restores memory loss and reverses symptoms of Alzheimer's

Dopamine-receptor gene variant linked to human longevity

Eliminating useless information important to learning, making new memories

Did Lucy walk, climb, or both?

Rare Form of Active 'Jumping Genes' Found In Mammals

Unlike we thought for 100 years: Molds are able to reproduce sexually

Kenyan premier appeals for aid in poaching menace

Poachers slaughter Kenyan elephant family

Rainfall, brain infection linked in sub-Saharan Africa

Swine flu kills Jordanian: health minister

Scientists say vaccine temporarily brakes HIV

Penn Team Mimicking a Natural Defense Against Malaria to Develop New Treatments

Censored China paper to publish 'as normal'

China press freedom campaign swells with new rally

Former prisoner welcomes China labour camp reform

China bloggers back censorship protest

Chinese man guilty of '$100 mn' software piracy

Colombian navy captures drug gang's semi-submersible

French, US forces detain 12 suspected Somali pirates

Police among dead in gambling shootout

China economy to overtake US by 2019: state research

Steady tide of acquisitions mark new year

Economic, climate crises raise risks for world: WEF

China house prices rise in December

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement