. Medical and Hospital News .

Micro-Machines for the Human Body
by Staff Writers
Tel Aviv, Israel (SPX) Aug 09, 2013

MEMS actuators, which may focus your next smartphone's camera, work in the other direction, executing commands by converting electrical signals into movement.

Tiny sensors and motors are everywhere, telling your smartphone screen to rotate and your camera to focus. Now, a team of researchers at Tel Aviv University has found a way to print biocompatible components for these micro-machines, making them ideal for use in medical devices, like bionic arms.

Microelectromechanical systems, better known as MEMS, are usually produced from silicon. The innovation of the TAU researchers - engineering doctoral candidates Leeya Engel and Jenny Shklovsky under the supervision of Prof. Yosi Shacham-Diamand of the School of Electrical Engineering and Slava Krylov of the School of Mechanical Engineering - is creating a novel micro-printing process that works a highly flexible and non-toxic organic polymer.

The resulting MEMS components can be more comfortably and safely used in the human body and they expend less energy.

A two-way street
As their name suggests, MEMS bridge the worlds of electricity and mechanics. They have a variety of applications in consumer electronics, automobiles, and medicine. MEMS sensors, like the accelerometer that orients your smartphone screen vertically or horizontally, gather information from their surroundings by converting movement or chemical signals into electrical signals.

MEMS actuators, which may focus your next smartphone's camera, work in the other direction, executing commands by converting electrical signals into movement.

Both types of MEMS depend on micro- and nano-sized components, such as membranes, either to measure or produce the necessary movement.

For years, MEMS membranes, like other MEMS components, were primarily fabricated from silicon using a set of processes borrowed from the semiconductor industry. TAU's new printing process, published in Microelectronic Engineering and presented at the AVS 59th International Symposium in Tampa, FL, yields rubbery, paper-thin membranes made of a particular kind of organic polymer.

This material has specific properties that make it attractive for micro- and nano-scale sensors and actuators. More importantly, the polymer membranes are more suitable for implantation in the human body than their silicon counterparts, which partially stems from the fact that they are hundreds of times more flexible than conventional materials.

The unique properties of the polymer membranes have unlocked unprecedented possibilities. Their flexibility could help make MEMS sensors more sensitive and MEMS motors more energy efficient. They could be key to better cameras and smartphones with a longer battery life.

Giving patients a hand
But the printing process may deliver the biggest jolt to the field of medicine, where polymer membranes could be used in devices like diagnostic tests and smart prosthetics.

There are already bionic limbs that can respond to stimuli from an amputee's nervous system and the external environment, and prosthetic bladders that regulate urination for people paralyzed below the waist. Switching to MEMS made with the polymer membranes could help make such prosthetics more comfortable, efficient, and safer for use on or inside the body.

"The use of new, soft materials in micro devices stretches both the imagination and the limits of technology," Engel says, "but introducing polymer MEMS to industry can only be realized with the development of printing technologies that allow for low cost mass production. The team's new polymer membranes can already be quickly and inexpensively produced."

The polymer base for the membranes was supplied along with a grant by French chemical producer Arkema/Piezotech. "They just gave us the material and asked us to see what devices we could create with it," Engel reports. "This field is like Legos for grownups."

The next step, she says, is to use the printing process to make functional sensors and actuators almost entirely out of the polymer at the micro- and nano-scales. Such flexible machines could be put to use in things like artificial muscles and screens so flexible that you can roll them up and put them in your pocket.


Related Links
Tel Aviv University
Hospital and Medical News at InternDaily.com

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


As climate, disease links become clearer, study highlights need to forecast future shifts
Athens GA (SPX) Aug 07, 2013
Climate change is affecting the spread of infectious diseases worldwide, according to an international team of leading disease ecologists, with serious impacts to human health and biodiversity conservation. Writing in the journal Science, they propose that modeling the way disease systems respond to climate variables could help public health officials and environmental managers predict and mitig ... read more

Fukushima operator pumps out toxic groundwater

Legacy of 1986 Chernobyl disaster seen in impact on region's forests

Dark tourism brings light to disaster zones

Papua New Guinea opposition challenges asylum deal

Satellite tracking of zebra migrations in Africa is conservation aid

'Spoofing' attack test takes over ship's GPS navigation at sea

Orbcomm Globaltrak Completes Shipment Of Fuel Monitoring Solution In Afghanistan

Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

Study explores effects of review setting on scientific peer review

Psychological adaptation to urbanization, technology reflected in word usage over last 200 years

Cool heads likely won't prevail in a hotter, wetter world

Study: 'Adam' and 'Eve' lived in same time period

Strangers invade the homes of giant bacteria

NASA satellites used to predict zebra migrations

Eavesdropping plants prepare to be attacked

New proto-mammal fossil sheds light on evolution of earliest mammals

New case of H7N9 bird flu confirmed in China: officials

Researchers propose new experiments on mutant bird flu

First likely case of H7N9 bird flu spread by humans reported

Brazilian scientists to test AIDS vaccine on monkeys

Popular China bloggers should "promote virtues": official

China twin babies stolen by doctor found: state media

Tibetan exile burns himself to death in Nepal

China young adults getting fatter: report

Russia home to text message fraud "cottage industry"

Global gangs rake in $870 bn a year: UN official

Mexican generals freed after cartel charges dropped

Mexicans turn to social media to report on drug war

China industrial output growth jumps to five-month high

Fall in China loans in July: central bank

Rich economies on growth track, China slows: OECD

China annual inflation steady at 2.7% in July: govt

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement