Subscribe free to our newsletters via your
  Medical and Hospital News  


Subscribe free to our newsletters via your




















INTERN DAILY
New Imaging Technique Accurately Finds Cancer Cells, Fast

A team of Illinois researchers developed an imaging technique that uses laser light to identify cancer cells. The fast, accurate technique could lead to real-time optical biopsies. From left, Eric Chaney, a research specialist at the Beckman Institute; Stephen Boppart, a professor of electrical and computer engineering, of bioengineering and of medicine; Martin Gruebele, a professor of chemistry and of physics; and Wladamir Benalcazar, a graduate fellow at the Beckman Institute.
by Liz Ahlberg
Champaign IL (SPX) Nov 26, 2010
The long, anxious wait for biopsy results could soon be over, thanks to a tissue-imaging technique developed at the University of Illinois.

The research team demonstrated the novel microscopy technique, called nonlinear interferometric vibrational imaging (NIVI), on rat breast-cancer cells and tissues. It produced easy-to-read, color-coded images of tissue, outlining clear tumor boundaries, with more than 99 percent confidence - in less than five minutes.

Led by professor and physician Stephen A. Boppart, who holds appointments in electrical and computer engineering, bioengineering and medicine, the Illinois researchers will publish their findings on the cover of the Dec. 1 issue of the journal Cancer Research.

In addition to taking a day or more for results, current diagnostic methods are subjective, based on visual interpretations of cell shape and structure. A small sample of suspect tissue is taken from a patient, and a stain is added to make certain features of the cells easier to see. A pathologist looks at the sample under a microscope to see if the cells look unusual, often consulting other pathologists to confirm a diagnosis.

"The diagnosis is made based on very subjective interpretation - how the cells are laid out, the structure, the morphology," said Boppart, who is also affiliated with the university's Beckman Institute for Advanced Science and Technology. "This is what we call the gold standard for diagnosis. We want to make the process of medical diagnostics more quantitative and more rapid."

Rather than focus on cell and tissue structure, NIVI assesses and constructs images based on molecular composition. Normal cells have high concentrations of lipids, but cancerous cells produce more protein. By identifying cells with abnormally high protein concentrations, the researchers could accurately differentiate between tumors and healthy tissue - without waiting for stain to set in.

Each type of molecule has a unique vibrational state of energy in its bonds. When the resonance of that vibration is enhanced, it can produce a signal that can be used to identify cells with high concentrations of that molecule. NIVI uses two beams of light to excite molecules in a tissue sample.

"The analogy is like pushing someone on a swing. If you push at the right time point, the person on the swing will go higher and higher. If you don't push at the right point in the swing, the person stops," Boppart said. "If we use the right optical frequencies to excite these vibrational states, we can enhance the resonance and the signal."

One of NIVI's two beams of light acts as a reference, so that combining that beam with the signal produced by the excited sample cancels out background noise and isolates the molecular signal. Statistical analysis of the resulting spectrum produces a color-coded image at each point in the tissue: blue for normal cells, red for cancer.

Another advantage of the NIVI technique is more exact mapping of tumor boundaries, a murky area for many pathologists. The margin of uncertainty in visual diagnosis can be a wide area of tissue as pathologists struggle to discern where a tumor ends and normal tissue begins. The red-blue color coding shows an uncertain boundary zone of about 100 microns - merely a cell or two.

"Sometimes it's very hard to tell visually whether a cell is normal or abnormal," Boppart said. "But molecularly, there are fairly clear signatures."

The researchers are working to improve and broaden the application of their technique. By tuning the frequency of the laser beams, they could test for other types of molecules. They are working to make it faster, for real-time imaging, and exploring new laser sources to make NIVI more compact or even portable. They also are developing new light delivery systems, such as catheters, probes or needles that can test tissue without removing samples.

"As we get better spectral resolution and broader spectral range, we can have more flexibility in identifying different molecules," Boppart said. "Once you get to that point, we think it will have many different applications for cancer diagnostics, for optical biopsies and other types of diagnostics."

The National Cancer Institute of the National Institutes of Health sponsored the study. Other co-authors were Beckman Institute researchers Praveen Chowdary, Zhi Jiang, Eric Chaney, Wladimir Benalcazar and Daniel Marks, and professor of chemistry and physics Martin Gruebele.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Beckman Institute for Advanced Science and Technology
Hospital and Medical News at InternDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


INTERN DAILY
New Medical Imaging Reveals Microscopic Detail Inside Our Bodies
Washington DC (SPX) Nov 23, 2010
See it for yourself: a new breakthrough in imaging technology using a combination of light and sound will allow health care providers to see microscopic details inside the body. Access to this level of detail potentially eliminates the need for some invasive biopsies, but it also has the potential to help health care providers make diagnoses earlier than ever before-even before symptoms arise.. ... read more







INTERN DAILY
Seven killed as bridge collapses in China

LIDAR Applications In Coastal Morphology And Hazard Assessment

Violence grips Haiti ahead of elections

Finnish know-how can solve global problems: Nokia chief

INTERN DAILY
New Simulator Offers Ability To Record And Replay GLONASS And GPS

Russia To Launch New Generation Satellite In 2013

SkyTraq Introduces New GLONASS/GPS Receiver

SES To Contribute To Galileo Operations

INTERN DAILY
Jet-Lagged And Forgetful? It's No Coincidence

Single drop of blood could reveal age

Study Reveals Neural Basis Of Rapid Brain Adaptation

Human Children Outpaced Neanderthals By Slowing Down

INTERN DAILY
Can Cacti Escape Underground In High Temperatures

Engineer Provides New Insight Into Pterodactyl Flight

Tigers And Polar Bears Are Highly Vulnerable To Environmental Change

Slugfest Losers Ignored By The Female

INTERN DAILY
Haiti cholera death toll surges past 1,600

Cholera And Vaccine Experts Urge United States To Stockpile Vaccine

Haiti cholera death toll surges past 1,500

New AIDS cases fall by one fifth in a decade: UN

INTERN DAILY
Empty chair for Liu at Nobel ceremony: activist

Empty chair for Liu at Nobel ceremony: activist

China harassing Mongols ahead of dissident release: activist

China overturns 10 percent of death sentences

INTERN DAILY
Piracy sidelines third of Taiwan's Indian Ocean tuna fleet

Dutch navy arrests 20 Somalis over S.African yacht attack

Chinese crew fights off pirates near Somalia

Pirates seize ship with 29 Chinese sailors aboard: Xinhua

INTERN DAILY
Computer meltdown leaves millions of Aussies without cash

China central bank warns of growing inflationary pressure

Hong Kong developers slam 'heavy' property cooling measures

China expected to raise 2011 inflation target: state media


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement