. Medical and Hospital News .

Physicists, biologists unite to expose how cancer spreads
by Catherine Zandonella, Office of the Dean for Research
Princeton NJ (SPX) Apr 30, 2013

A multi-institutional study including researchers from Princeton University's Physical Sciences-Oncology Center found that metastatic cancer cells are more aggressive and nimble than nonmalignant cells. The Princeton group used silicon-etched microchannels (above) to study the behavior and physical properties of cancer cells. In this device, metastatic cancer cells enter the narrow channels at one end and accelerate as they rapidly move down the channel. Such high motility is a hallmark of metastasis and also indicative of high glucose metabolism, another hallmark of cancer. (Image by Guillaume Lambert).

Cancer cells that can break out of a tumor and invade other organs are more aggressive and nimble than nonmalignant cells, according to a new multi-institutional nationwide study. These cells exert greater force on their environment and can more easily maneuver small spaces.

The researchers report in the journal Scientific Reports that a systematic comparison of metastatic breast-cancer cells to healthy breast cells revealed dramatic differences between the two cell lines in their mechanics, migration, oxygen response, protein production and ability to stick to surfaces. The researchers discovered new insights into how cells make the transition from nonmalignant to metastatic, a process that is not well understood.

The resulting catalogue of differences could someday help researchers detect cancerous cells earlier and someday prevent or treat metastatic cancer, which is responsible for 90 percent of all cancer deaths, according to the study.

It was conducted by a network of 12 federally funded Physical Sciences-Oncology Centers (PS-OC) sponsored by the National Cancer Institute. PS-OC is a collaboration of researchers in the physical and biological sciences seeking a better understanding of the physical and chemical forces that shape the emergence and behavior of cancer.

"By bringing together different types of experimental expertise to systematically compare metastatic and nonmetastatic cells, we have advanced our knowledge of how metastasis occurs," said Robert Austin, professor of physics and leader of the Princeton PS-OC, along with senior co-investigator Thea Tlsty of the University of California-San Francisco.

Researchers with the Princeton PS-OC, for instance, determined that metastatic cells, in spite of moving more slowly than nonmalignant cells, move farther and in a straighter line, Austin said. The investigators studied the cells' behavior in tiny cell-sized chambers and channels etched out of silicon and designed to mimic the natural environment of the body's interior.

"The mobility of these metastatic cells is an essential feature of their ability to break through the tough membrane [the extracellular matrix] that the body uses to wall off the tumor from the rest of the body," Austin said. "These cells are essentially jail-breakers."

The tiny silicon chambers were built using Princeton's expertise in microfabrication technology - typically used to create small technologies such as integrated circuits and solar cells - and are an example of the type of expertise that physicists and engineers can bring to cancer research, Austin said.

For the current study, the Princeton team included physics graduate students David Liao and Guillaume Lambert, and postdoctoral researchers Liyu Liu and Saurabh Vyawahare.

They worked closely with a research group led by James Sturm, Princeton's William and Edna Macaleer Professor of Engineering and Applied Science and director of the Princeton Institute for the Science and Technology of Materials (PRISM) where the microfabrication was done.

The Princeton PS-OC also includes collaborators at the Johns Hopkins University School of Medicine, the Salk Institute for Biological Studies and the University of California-Santa Cruz.

The nationwide PS-OC program aims to crack the difficulty of understanding and treating cancer by bringing in researchers from physics, engineering, computer science and chemistry, said Nastaran Zahir Kuhn, program manager for the PS-OC at the National Cancer Institute.

Other notable findings from the paper include that metastatic cells recover more rapidly from the stress of a low-oxygen environment than nonmetastatic cells, which is consistent with previous studies.

Although the low-oxygen environment did kill many of the metastatic cells, the survivors rebounded vigorously, underscoring the likely role of individual cells in the spread of cancer. The study also looked at total protein production and detected proteins in the metastatic cells that are consistent with the physical properties such as mobility that malignant cells need to invade the extracellular matrix.

"The PS-OC program aims to bring physical sciences tools and perspectives into cancer research," Kuhn said. "The results of this study demonstrate the utility of such an approach, particularly when studies are conducted in a standardized manner from the beginning."

For the nationwide project, nearly 100 investigators from 20 institutions and laboratories conducted their experiments using the same two cell lines, reagents and protocols to assure that results could be compared. The experimental methods ranged from physical measurements of how the cells push on surrounding cells to measurements of gene and protein expression.

"Roughly 20 techniques were used to study the cell lines, enabling identification of a number of unique relationships between observations," Kuhn said.

For example, a technique known as atomic force microscopy indicated that metastatic cells are softer than nonmalignant cells whereas a different technique, traction force microscopy, suggested that metastatic cells exert more force on their surroundings, Kuhn said.

Together these two findings may indicate that metastatic cells can exert force to stick to, migrate on and remodel the tough extracellular matrix that surrounds the tumor, while remaining flexible enough to squeeze through small spaces in that membrane.


Related Links
Princeton University
Hospital and Medical News at InternDaily.com

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


Hong Kong prescribes new dose of old Chinese medicine
Hong Kong (AFP) April 30, 2013
The young woman pours a pack of brown powder into a glass of hot water, stirs it well and drinks the murky mixture down, hoping the traditional Chinese medicine will cure her feverish cold. Sofie Lau may work as a paediatric nurse and she may live in the modern, fast-paced city of Hong Kong - but when it comes to treating her own ill-health, she prefers ancient remedies. Despite the age ... read more

Finding a sensible balance for natural hazard mitigation with mathematical models

Hong Kong ferry disaster report finds 'litany of errors'

Ukraine marks Chernobyl disaster amid efforts to secure reactor

U.S. lawyer defends Australian asylum seekers

Russia launches latest satellite in its global positioning system

Northrop Grumman to Demonstrate Open Architecture Navigation System for DARPA

US army seeks new technology to replace GPS

Sat-nav warns London lorry drivers of cyclists

For ancient Maya, a hodgepodge of cultural exchanges

CNIO researchers 'capture' the replication of the human genome for the first time

Genetic circuit allows both individual freedom, collective good

As people live longer and reproduce less, natural selection keeps up

First falcons born in Paris since 19th century

Love-lorn tiger enters Indian zoo

The many faces of the bacterial defense system

Cheating favors extinction

Less-used drug better treats HIV in kids: study

Chinese premier urges vigilance against bird flu

H7N9 bird flu spreads to central China's Hunan

The microbes you inhale on the New York City subway

China officials holding secret sauna parties: state media

Cancer victim with jailed family faces China land battle

China hands down death sentences in lending crackdown

China investigating clashes that killed 21

Report: Belgian army sold helicopters to firm linked to trafficking

US feds 'kidnapped' suspected druglord: Guinea-Bissau

US ships look to net big contraband catches in Pacific

US court convicts Somali pirates in navy ship attack

China manufacturing slows in April

Outside View: U.S. at risk of double-dip recession

Outside View: U.S. GDP comes in at 2.5 percent

Walker's World: Merkel almost alone

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement