Subscribe free to our newsletters via your
  Medical and Hospital News  

Subscribe free to our newsletters via your

Tiny electronic implants monitor brain injury, then melt away
by Staff Writers
Champaign IL (SPX) Jan 19, 2016

This is an artist's rendering of the brain sensor and wireless transmitter monitoring a rat's brain. Image courtesy Julie McMahon. For a larger version of this image please go here.

A new class of small, thin electronic sensors can monitor temperature and pressure within the skull - crucial health parameters after a brain injury or surgery - then melt away when they are no longer needed, eliminating the need for additional surgery to remove the monitors and reducing the risk of infection and hemorrhage.

Similar sensors can be adapted for postoperative monitoring in other body systems as well, the researchers say. Led by John A. Rogers, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign, and Wilson Ray, a professor of neurological surgery at the Washington University School of Medicine in St. Louis, the researchers publish their work in the journal Nature on January 18.

"This is a new class of electronic biomedical implants," said Rogers, who directs the Frederick Seitz Materials Research Laboratory at Illinois. "These kinds of systems have potential across a range of clinical practices, where therapeutic or monitoring devices are implanted or ingested, perform a sophisticated function, and then resorb harmlessly into the body after their function is no longer necessary."

After a traumatic brain injury or brain surgery, it is crucial to monitor the patient for swelling and pressure on the brain. Current monitoring technology is bulky and invasive, Rogers said, and the wires restrict the patent's movement and hamper physical therapy as they recover. Because they require continuous, hard-wired access into the head, such implants also carry the risk of allergic reactions, infection and hemorrhage, and even could exacerbate the inflammation they are meant to monitor.

"If you simply could throw out all the conventional hardware and replace it with very tiny, fully implantable sensors capable of the same function, constructed out of bioresorbable materials in a way that also eliminates or greatly miniaturizes the wires, then you could remove a lot of the risk and achieve better patient outcomes," Rogers said.

"We were able to demonstrate all of these key features in animal models, with a measurement precision that's just as good as that of conventional devices."

The new devices incorporate dissolvable silicon technology developed by Rogers' group at the U. of I. The sensors, smaller than a grain of rice, are built on extremely thin sheets of silicon - which are naturally biodegradable - that are configured to function normally for a few weeks, then dissolve away, completely and harmlessly, in the body's own fluids.

Rogers' group teamed with Illinois materials science and engineering professor Paul V. Braun to make the silicon platforms sensitive to clinically relevant pressure levels in the intracranial fluid surrounding the brain. They also added a tiny temperature sensor and connected it to a wireless transmitter roughly the size of a postage stamp, implanted under the skin but on top of the skull.

The Illinois group worked with clinical experts in traumatic brain injury at Washington University to implant the sensors in rats, testing for performance and biocompatibility. They found that the temperature and pressure readings from the dissolvable sensors matched conventional monitoring devices for accuracy.

"The ultimate strategy is to have a device that you can place in the brain - or in other organs in the body - that is entirely implanted, intimately connected with the organ you want to monitor and can transmit signals wirelessly to provide information on the health of that organ, allowing doctors to intervene if necessary to prevent bigger problems," said Rory Murphy, a neurosurgeon at Washington University and co-author of the paper. "After the critical period that you actually want to monitor, it will dissolve away and disappear."

The researchers are moving toward human trials for this technology, as well as extending its functionality for other biomedical applications.

"We have established a range of device variations, materials and measurement capabilities for sensing in other clinical contexts," Rogers said. "In the near future, we believe that it will be possible to embed therapeutic function, such as electrical stimulation or drug delivery, into the same systems while retaining the essential bioresorbable character."


Related Links
University of Illinois at Urbana-Champaign
Hospital and Medical News at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
New technology puts health care in palm of your hand
Las Vegas (AFP) Jan 7, 2016
Managing your health care is moving increasingly to the palm of your hand - with new smartphone-enabled technology and wearable sensors that examine, diagnose and even treat many conditions and ailments. The Consumer Electronics Show in Las Vegas saw the debut of new applications for "virtual checkups" and ways to treat pain, manage stress and monitor conditions such as diabetes. French ... read more

Nepal quake rebuilding to take years, new chief says

MH370 search finds new shipwreck, but no plane

Six years on, quake-devastated Haiti mourns its dead

Snow makes migrants' journey through Europe even harder

GPS vultures swoop down on illegal dumps in Peru

Northrop Grumman to support U.S. Air Force GPS modernization

Europe's first decade of navigation satellites

Indra will deploy navigation aid systems in 20 Chinese airports

Study: 920,000 Pygmies living in forests of Central Africa

Chimp friendships are based on trust

Brain monitoring takes a leap out of the lab

Research suggests morality can survive without religion

First evidence for independent working memory systems in animals

Rare Cambodian elephant footage raises survival hopes

Hong Kong to ban ivory trade: leader

Bottom beginning to fall out of ivory market: regulator

Experimental immunotherapy zaps 2 most lethal Ebola virus strains

US Army probe blames leadership in anthrax shipment scandal

Ebola epidemic is over but expect flare-ups: UN

West Africa counts economic cost as Ebola outbreak ends

Rights activists dismiss missing bookseller 'confession'

Hong Kong 'Umbrella' leaders seek closer ties with Taiwan

Activists targeted as workers of China unite

China suspects Sichuan governor of graft

Two Mexican marines, suspect killed in shootout

U.S., U.K. help build West African partners' anti-piracy capabilities

EU delays decision on China market economy status

China growth slides to 25-year low in 2015: AFP survey

Banks' borrowing rate for yuan in Hong Kong hits record

Chinese economy stable: ADB president

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.