Medical and Hospital News  
CHIP TECH
AFRL approves Cooperative Research And Development agreement for silicon photonics
by Mary Pacinda for AFRL News
Wright-Patterson AFB OH (SPX) Apr 06, 2021

Dr. Chad Husko, CEO and founder of Iris Light, holds a 300 mm silicon wafer. (Courtesy photo)

The Air Force Research Laboratory recently approved a Cooperative Research and Development Agreement between its Nanoelectronic Materials Branch and Iris Light Technologies. The collaboration will be working to develop hybrid silicon lasers. Sometimes called the "holy grail of optoelectronics," these miniature lasers are part of a broader field of technology known as silicon photonics.

Silicon is perhaps most familiar for its role in semiconductor diodes - important components in the circuitry of nearly everything electronic that depends on microchip technology. Because of its atomic structure, silicon can be made to either conduct electricity or to block it. Its ability to control current flow is achieved by adding a small amount of another element, such as boron or phosphorus, to silicon's crystal lattice. As with nearly all electrical components, passing current through such "doped" silicon devices in a circuit always produces heat, but little light, limiting its use for LEDs or lasers.

Recently, some limited success in getting a silicon chip to emit a significant amount of light has been achieved by alloying silicon with germanium. The process is somewhat tedious, however, and germanium is expensive. An "easier" process using less expensive materials has remained elusive.

AFRL research scientist Dr. Steven Mckeown is part of a team that is investigating silicon photonics with a goal of finding a better way to fabricate hybrid devices that make possible the integration of lasers onto silicon chips. "The problem is that silicon has poor optical gain, gain being how we get 'lasing,'" he said.

Part of the goal is to find a less expensive and more reliable way to manufacture the "on-chip lasers," as well as a way to enable their mass-production. One method AFRL is investigating involves a type of "photonic ink" developed by Iris Light Technologies, AFRL's partner in the CRADA.

According to its website, Iris can use this photonic ink to print laser gain material directly onto passive silicon chips. Iris aims to modify the ink so that it will emit light when it is pumped by electric current. The ink is capable of emitting light over a broad spectrum, from visible to the near infrared.

"The novelty with this technology," said McKeown, "is that we are taking a plain silicon chip, which is easy to make, with no gain on it, and no light sources. During the processing of the chip, an ink material is printed onto the chip.

"The ink will be what converts the energy into the laser light," said McKeown. "The thing that actually kind of shapes the light and carries it and guides it is the silicon. It interacts with the ink in that it converts energy into laser emission."

Such "nano-material lasers" would have many practical applications. One would be in the circuitry of computers. Today's data processing speed is limited by resistance to the flow of electrons in the copper lines of the computer's circuitry. This resistance produces heat. Using light, or photons, instead of electrons means less resistance and less heat, which in turn means faster data processing.

"This is especially relevant for data processing centers that use insane amounts of power," said McKeown. "Interconnects now use pluggable transceivers to put data onto an optical fiber to move from rack to rack. The more tightly we can integrate all these pieces, the closer they get and the shorter the wires we need - all of which increase speed and lower power consumption. The best case is a silicon photonic chip complete with a laser and the CMOS circuitry all in one."

CMOS, or complementary metal oxide semiconductors, are low-cost, energy-efficient transistors.

Other applications of special interest to AFRL are hyperspectral sensing, Light Detection and Ranging (LIDAR), and radio frequency (RF) photonics.

Hyperspectral sensing is a technique where an image is analyzed across many bands of the electromagnetic spectrum at once, rather than assigning only a single color to a pixel.

"Think of it like taking a picture with many different filters so you can see exactly how much of each color - even invisible colors like infrared or UV - it has," said McKeown.

"A normal image is broken down into red/green/blue 'bands' (the 'RGB' value, for instance)," said McKeown. "A typical camera has three different sensors, one for each color band. Multi-spectral is maybe red/yellow/green/blue/orange/purple."

"Hyper-spectral," he added, "means we break 'red' down into many bands, maybe 10 to 100. But we also do this for other colors, all at the same time. In a normal image two things that look the same color of red may have different spectral content at that resolution."

This kind of capability has many uses. For example, it can produce satellite imagery of Earth's surface for identifying minerals in a rock formation or monitoring the condition of crops or forests. In medical imaging, it can help doctors identify diseased tissue in the early stages of an illness.

LIDAR, which uses a laser beam to measure distance, is used for a multitude of applications, from mapping to providing guidance systems for self-driving cars.

RF photonics deals with radio frequencies, which are generally analog signals -meaning they vary over time. Such analog signals can be converted to digital signals, that is, a series of zeros and ones. In translating analog to digital, however, a lot of information can be lost.

McKeown explains further that "RF photonics" doesn't mean just dealing with analog signals. "It means we're using photonics (hundreds of terahertz on the electromagnetic spectrum) to convey radio frequency (tens of gigahertz) information," he said. "These high frequencies are very difficult to transmit as electrical signals because of losses, especially at long distances. If we encode them on a laser, we take a conversion penalty, but we get rid of that problem.

"There are also advantages for certain types of signal processing when done in the optical domain," he continued. "Digitizing high frequency radio signals is difficult and produces a lot of data, and analog electrical components can be bulky."

McKeown explained that a lot of the current technology is big and bulky because it has so many components. However, on-chip laser technology will allow reducing the size of the complete functioning apparatus to "about the size of a quarter." It is also less expensive than current technology. "Integration," he said, "eliminates the packaging and all the labor to manufacture the various parts."

McKeown went on to state that getting lasers on a silicon platform is a very known, active problem. "So, researchers are looking at everything, and not every solution may apply to every problem. We may end up with a toolkit that has several solutions, or we may end up with one solution for all problems."

With the CRADA, Iris will provide AFRL with a set of test chips.

"Our lab has the capability for measuring line width of the lasers," said McKeown, "as well as wavelength and different metrics to use to characterize them. Then we will provide feedback to the researchers at Iris so they know what to do to improve their design.

"The advantage of the CRADA is we can get a feel for this type of technology and see how it works and what it's good for."


Related Links
Air Force Research Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Qubits comprised of holes could be the trick to build faster, larger quantum computers
Sydney, Australia (SPX) Apr 02, 2021
A new study indicates holes the solution to operational speed/coherence trade-off, potential scaling up of qubits to a mini-quantum computer. Quantum computers are predicted to be much more powerful and functional than today's 'classical' computers. One way to make a quantum bit is to use the 'spin' of an electron, which can point either up or down. To make quantum computers as fast and power-efficient as possible we would like to operate them using only electric fields, which are applied us ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
At least five dead as Bangladesh ferry sinks after collision

Vatican urges 'motherly care' for climate refugees

US military offers to help in blocked Suez Canal

Food ferried to isolated Australians as flood threat lingers

CHIP TECH
MyGalileoSolution and MyGalileoDrone: A word from the winners

Google Maps to show more eco-friendly routes

Soyuz launch campaign for 2 Galileo satellites postponed Until November

Ten years of safer skies with Europe's other satnav system

CHIP TECH
South African rock shelter artifacts show early humans colonized inland areas

Overhearing negative social remarks can inspire bias in children

Natural soundscapes boost health markers, lower stress

Bones of ancient Mayan ambassador reveal a privileged but difficult life

CHIP TECH
Boxed in by poachers, African elephants only use fraction of potential range

Snakes, rats and cats: the trillion dollar invasive species problem

Activists cheer record baby prospects for Pyrenees bears

Lake bottoms may provide insight into cyanobacteria blooms

CHIP TECH
Uzbekistan begins jab drive with AstraZeneca, Chinese vaccine

China slams Covid-19 probe critics as Europe reels from surges

WHO experts give nod to China jabs, boosting global vaccine drive

WHO chief toughens tone on China with lab probe call

CHIP TECH
BBC reporter leaves China, says 'too risky to carry on'

Hong Kong to vet political candidates' past to ensure loyalty to China

Veteran Hong Kong activists convicted over huge democracy rally

US criticizes China, affirms Hong Kong lost special status

CHIP TECH
Crew of Chinese boat freed from kidnappers: Nigerian army

USS Winston Churchill crews seize illegal weapons off coast of Somalia

Jade and rubies: how Myanmar's military amassed its fortune

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.