Medical and Hospital News  
STELLAR CHEMISTRY
ALMA witnesses deadly star-slinging tug-of-war between merging galaxies
by Staff Writers
Charlottesville VA (SPX) Sep 06, 2022

Scientists observing the newly-dormant galaxy SDSS J1448+1010 found that most of its star-forming fuel had been tossed out of the system as it merged with another galaxy. That gas is not forming new stars for the galaxy but remains nearby in new structures known as tidal tails. This artist's conception shows the stream of gas and stars that were flung away from the massive galaxy during its merger.

While observing a newly-dormant galaxy using the Atacama Large Millimeter/submillimeter Array (ALMA) and the Hubble Space Telescope (HST), scientists discovered that it had stopped forming stars not because it had used up all of its gas but because most of its star-forming fuel had been thrown out of the system as it merged with another galaxy. The result is a first for ALMA scientists. What's more, if proven common, the results could change the way scientists think about galaxy mergers and deaths. The results of the research are published in The Astrophysical Journal Letters.

As galaxies move through the Universe, they sometimes encounter other galaxies. As they interact, each galaxy's gravity pulls on the other. The ensuing tug-of-war flings gas and stars away from the galaxies, leaving behind streams of material known as tidal tails.

And that's just what scientists believe happened to SDSS J1448+1010, but with a plot twist. The massive galaxy, which was born when the Universe was about half its current age, has nearly completed merging with another galaxy.

During observations with the HST and ALMA- an international collaboration in which the U.S. National Science Foundation's National Radio Astronomy Observatory (NRAO) is a partner- scientists discovered tidal tails containing roughly half of the entire system's cold, star-forming gas. The discovery of the forcefully discarded material- equal to 10 billion times the mass of Earth's Sun- was an indication that the merger may be responsible for snuffing out star formation, and that's something scientists didn't expect.

"What initially made this massive galaxy interesting was that, for some reason, it suddenly stopped forming stars about 70 million years ago immediately following a burst of star-forming activity.

Most galaxies are happy to just keep forming stars," said Justin Spilker, an astronomer at Texas A and M University and the lead author of the paper. "Our observations with ALMA and Hubble proved that the real reason the galaxy stopped forming stars is that the merger process ejected about half the gas fuel for star formation into intergalactic space. With no fuel, the galaxy couldn't keep forming stars."

The discovery is shedding light on the processes by which galaxies live or die, and helping scientists to better understand their evolution.

"When we look out at the Universe, we see some galaxies that are actively forming new stars, like our own Milky Way, and some that aren't. But those 'dead' galaxies have many old stars in them, so they must have formed all of those stars at some point and then stopped making new ones," said Wren Suess, a cosmology fellow at the University of California Santa Cruz and a co-author of the paper.

"We still don't yet understand all of the processes that make galaxies stop forming stars, but this discovery shows just how powerful these major galaxy mergers are, and how much they can affect how a galaxy grows and changes over time."

Because the new result is from a single observation, it is currently unclear just how common this tug-of-war and its resultant quiescence may be. However, the discovery challenges long-held theories about exactly how star formation stops and galaxies die and has provided scientists with an exciting new challenge: to find more examples.

"While it's pretty clear from this system that cold gas really can end up way outside of a merger system that shuts off a galaxy, the sample size of one galaxy tells us very little about how common this process is," said David Setton, a graduate student in the department of physics and astronomy at the University of Pittsburgh and a co-author of the paper.

"But, there are many galaxies out there like J1448+1010 that we're able to catch right in the middle of those crashes and study exactly what happens to them when they go through that stage. The ejection of cold gas is an exciting new piece of the quiescence puzzle, and we're excited to try to find more examples of this."

Spilker added, "Astronomers used to think that the only way to make galaxies stop forming stars was through really violent, fast processes, like a bunch of supernovae exploding in the galaxy to blow most of the gas out of the galaxy and heat up the rest. Our new observations show that it doesn't take a 'flashy' process to cut off star formation. The much slower merging process can also put an end to star formation and galaxies."

Star formation suppression by tidal removal of cold molecular gas from an intermediate-redshift massive post-starburst Research Report:galaxy


Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Red Giant Betelgeuse was yellow some 2,000 years ago
Jena, Germany (SPX) Sep 06, 2022
With progressing nuclear fusion in the center of a star, brightness, size, and color also change. Astrophysicists can derive from such properties important information on age and mass of a star. Those stars with significantly more mass than our Sun are blue-white or red - the transition from red via yellow and orange is relative rapid for astronomical time-scales. Astrophysicists of Friedrich Schiller University Jena, Germany, together with colleagues of other subjects from the USA and Italy, have ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Energy and food crises reshaping insurance: Swiss Re

Syrian refugees in Turkey plan caravan to reach EU

Mexican lawmakers approve contentious security reform

Downpours and mudslides hamper China earthquake rescue mission

STELLAR CHEMISTRY
Latest Galileo satellites join constellation with enhanced, faster fix

MariaDB reimagines how databases deliver geospatial capabilities with acquisition

Space Systems Command awards GPS support contract to Lockheed Martin

Safran acquires Orolia and plans to become the world leader in resilient PNT

STELLAR CHEMISTRY
Archaeologists say skeleton shows earliest surgical amputation 31,000 years ago

Neolithic culinary traditions uncovered

Remains found in British well provide insight into Ashkenazi genetic 'bottleneck'

Last member of Brazilian indigenous community found dead

STELLAR CHEMISTRY
Could more of Earth's surface host life?

Why plants worldwide became woody

The green king: Charles the environmentalist

S.Africa's Kruger Park sees drop in rhino numbers

STELLAR CHEMISTRY
Hong Kong extends digital vaccine pass to kids as young as five

US law can't require coverage of HIV prevention drugs, judge rules

China's Chengdu extends Covid lockdown

Hong Kong records first monkeypox case

STELLAR CHEMISTRY
UN rights council credibility at stake over China, Russia response

Hong Kong court convicts five of sedition over children's books

Hong Kong jails five for sedition over children's books

Head of Hong Kong journalist union arrested

STELLAR CHEMISTRY
Iran navy says thwarted pirate attack on ship in Red Sea

Army taking on gangs in Colombia's biggest port

Third body found in drought-hit lake outside Las Vegas

Mexico captures drug lord wanted for murder of US agent

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.