Subscribe free to our newsletters via your
. Medical and Hospital News .




CHIP TECH
A Step Closer to a Photonic Future
by Staff Writers
Washington DC (SPX) Feb 24, 2014


Microscope image of the full chip fabricated in IBM's 45nm process containing electronics and photonics on the same chip. Image courtesy Michael Georgas.

The future of computing may lie not in electrons, but in photons - that is, in microprocessors that use light instead of electrical signals. But these so-called photonic devices are typically built using customized methods that make them difficult and expensive to manufacture.

Now, engineers have demonstrated that low power photonic devices can be fabricated using standard chip-making processes. They have achieved what the researchers dub a major milestone in photonic technology. The work will be presented at this year's Optical Fiber Communication (OFC) Conference and Exposition, being held March 9-13 in San Francisco.

The two new devices - a modulator and a tunable filter - are as energy-efficient as some of the best devices around, the researchers say, and were built using a standard IBM advanced Complementary Metal-Oxide Semiconductor (CMOS) process - the same chip-making process used to build many commercially available chips, some of which are found in Sony's Playstation 3 and also in Watson, the supercomputer that won Jeopardy! in 2011.

"As far as we know, we're the first ones to get silicon photonics natively integrated into an advanced CMOS process and to achieve energy efficiencies that are very competitive with electronics," said Mark Wade of the University of Colorado, Boulder, who will present his team's work at OFC. Wade's co-authors include researchers from the Massachusetts Institute of Technology and the University of California, Berkeley.

Quenching a Thirst for Power
Moore's Law says that the number of transistors that can fit on a chip doubles every two years, resulting in the exponential rise in computing power we have seen over the last few decades. But even as transistors continue to shrink, Moore's Law may be reaching its limits, due to the fact that the devices are requiring more power to run, which leads to overheating.

Such thirst for power is especially problematic for the communication link between a computer's central processing unit and its memory.

"It's gotten to the point where it takes too much energy and that limits your computational power," Wade said.

A solution to this problem may lie in photonics, which researchers anticipate will be at least 10 times more energy efficient than electronics. Chip-to-chip communication links using these photonic devices could have at least 10 times higher bandwidth density, meaning they can transmit much more information using a smaller amount of space. That's because different optical signals can share the same optical wire, whereas sending multiple electrical signals either requires multiple electronic wires or schemes that require more chip space and energy.

But so far, Wade explains, photonic devices used in chip-to-chip communication have been primarily custom-built using specialized methods, limiting their commercial applicability. And devices that have been created with more standardized techniques rely on older technology, which limits their ability to compete with cutting-edge electronics.

On the Road to Commercialization
The ability to produce high-performing photonic devices using the CMOS process means chip designers will not have to be specialists to design photonic devices, Wade explained, which will hopefully accelerate the commercialization of photonic technology.

"IBM's CMOS process has already been commercially proven to make high-quality microelectronics products," Wade said. The work was part of the U.S. Defense Advanced Research Projects Agency's Photonically Optimized Embedded Microprocessors (POEM) project.

The two devices built by the researchers are key components for the communication link between a computer's central processing unit and its memory. A modulator converts electrical signals into optical signals. A tunable filter can pick out light signals of particular frequencies, allowing it to select a signal from multiple frequencies, each of which carries data. Used in conjunction with a photodetector, the filter converts optical signals to electrical signals.

But according to Wade, the significance of this advancement goes beyond this particular application.

"This is a really nice first step for silicon photonics to take over some areas of technology where electronics has really dominated and to start building complex electronic/photonic systems that require dense integration," Wade said.

Presentation Tu2E.7, titled "Energy-efficient active photonics in a zero-change, state-of-the-art CMOS process," will take place Tuesday, March 11 at 3:30 p.m. in room 123 of the Moscone Center.

.


Related Links
Optical Fiber Communication (OFC) Conference and Exposition
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Flexible 1D-1R Memory Cell Array Assists Development of Wearable Computers
Seoul, Korea (SPX) Feb 24, 2014
With the introduction of curved smartphones, flexible electronic goods are gradually moving to the center stages of various markets. Flexible display technology is the culmination of the latest, cutting-edge electric cell device technology. Developing such products, however, requires not only a curved display, but also operational precision of other parts, including the memory, in a flexible sta ... read more


CHIP TECH
100-tonne radioactive water leak at Fukushima: TEPCO

Post-tsunami deaths outnumber disaster toll in one Japan area

Police to investigate death of Manus asylum detainee

Outsmarting nature during disasters

CHIP TECH
Russia to deploy up to 7 Glonass ground stations outside of national territory in 2014

Northrop Grumman Awarded U.S. Military Contract for Navigation Systems

Galileo works, and works well

Sochi Olympic transport controlled from space using GLONASS satellite

CHIP TECH
Baylor Sheds New Light on the Habitat of Early Apes

Oldest fortified settlement in North America discovered in Georgia

What makes memories last?

Thinking it through: Scientists seek to unlock mysteries of the brain

CHIP TECH
Indonesian elephants found dead, poisoning suspected

Chinese pandas get red-carpet welcome in Belgium

Wolf hunt stand-off in Sweden heightens rural tensions

University of Tennessee study finds crocodiles climb trees

CHIP TECH
Study on flu evolution may change textbooks, history books

Flu hits young, middle aged people hard this year

Poland struck by first cases of African swine fever

Boy becomes Cambodia's first bird flu death of year

CHIP TECH
Wife of jailed Chinese Nobel winner in hospital

Questions over recovery of China's lost marbles

Ai Weiwei brushes off painter's smashing of $1m vase

Hong Kong officials criticise anti-Chinese protest

CHIP TECH
French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

China smugglers dig tunnel into Hong Kong: media

CHIP TECH
One of China's richest women ousted from top political body

Dalai Lama, in US, seeks humane capitalism

Hard landing unlikely for 'poorly understood' China: IMF chief

ATMs raise Bitcoin profile, concerns




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.