Medical and Hospital News  
TECH SPACE
A new-structure magnetic memory device developed
by Staff Writers
Sendai, Japan (SPX) Mar 25, 2016


Schematics of structures for three kinds of spin-orbit-torque-induced magnetization scheme. (a) The first previous structure where the magnetization is perpendicular to the film plane. (b) The second previous structure where the magnetization is in-plane and orthogonal to channel current. (c) The new structure where the magnetization is in-plane and collinear with the current. Image courtesy Shunsuke Fukami. For a larger version of this image please go here.

The research group of Professor Hideo Ohno and Associate Professor Shunsuke Fukami of Tohoku University has developed a new-structure magnetic memory device utilizing spin-orbit- torque-induced magnetization switching.

For these two decades, much effort has been devoted to the development of magnetic random access memories (MRAMs), which store information as the magnetization direction of a magnet. Since the magnetization can, be in general, be reversed at high speed unlimitedly, the MRAMs are regarded as a promising replacement for currently-used semiconductor-based working memories such as static random access memories (SRAMs) and dynamic random access memories (DRAMs), which are now facing several serious issues.

The central issue of the MRAM development is how to achieve magnetization reversal efficiently.

Recently, spin-orbit-torque (SOT)-induced magnetization switching - where torques brought about by an in-plane current through the spin-orbit interactions are utilized - was demonstrated and intensively studied. In principle, the SOT-induced switching allows for an ultrafast magnetization reversal in a nanosecond timescale.

The research group of Tohoku University showed a new scheme of SOT-induced magnetization switching. Whereas there had been two kinds of switching schemes where the magnetization is directed orthogonally to the applied write current, the present structure has the magnetization directing collinear with the current. The group fabricated three-terminal devices with the new structure, where a Ta/CoFeB/MgO-based magnetic tunnel junction is used, and successfully demonstrated the switching operation.

The required current density to induce the magnetization switching was reasonably small and the resistance difference between "0" and "1" states was reasonably large, indicating that the new structure is a promising candidate for the MRAM applications.

In addition, the group showed that the new structure has the potential to serve as a useful tool to go deeply into the physics of SOT-induced switching, in which a number of unrevealed issues remain.

The magnetic memory device can store the information without power supply, allowing a drastic reduction of the power consumption of integrated circuits. In particular, this benefit becomes significant for applications that have relatively long standby times, such as sensor nodes which are likely to perform important roles in future IoT (Internet of Things) societies.

In this regard, the present work is expected to pave the way toward the realization of ultralow-power and high-performance integrated circuits and IoT societies.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Tohoku University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
INRS takes giant step forward in generating optical qubits
Quebec City, Canada (SPX) Mar 17, 2016
The optical chip developed at INRS by Prof. Roberto Morandotti's team overcomes a number of obstacles in the development of quantum computers, which are expected to revolutionize information processing. The international research team has demonstrated that on-chip quantum frequency combs can be used to simultaneously generate multiphoton entangled quantum bit (qubit) states. Quantum comput ... read more


TECH SPACE
No hope of survivors in northern Pakistan avalanche: officials

Two schoolchildren killed, nine missing in Pakistan avalanche

Hope fades to fear for Chinese refugees in junta-run Thailand

Maths could help search and rescue ships sail more safely in heavy seas

TECH SPACE
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

TECH SPACE
400,000-year-old fossils from Spain provide earliest genetic evidence of Neandertals

How the brain detects short sounds

Neanderthal diet: Only 20 percent vegetarian

Early human habitat, recreated for first time, shows life was no picnic

TECH SPACE
Small birds' vision: Not so sharp but superfast

New Alaska butterfly species is first in 28 years

Biological field stations: Keeping a pulse on our planet

Dissecting the animal diet, past and present

TECH SPACE
Potential Zika virus risk estimated for 50 US cities

Change in mosquito mating may control Zika virus

Testing the evolution of resistance by experiment

Google teams with UNICEF to map Zika virus spread

TECH SPACE
Missing Chinese journalist has been detained: lawyer

Rights groups slam China over missing journalist

Facebook CEO enjoys smoggy Beijing run ahead of forum

Sky high prices for Beijing low rises, with school rights

TECH SPACE
10 gang suspects killed in northern Mexico

Two Mexican marines, suspect killed in shootout

TECH SPACE
Trudeau takes Canada back into the red to boost growth

Money to burn? China firms seek new investors

China mine workers detained after wages protest: locals

China renews vow to avoid 'hard landing' as congress ends









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.