Medical and Hospital News  
CHIP TECH
A new way to count qubits
by Staff Writers
Syracuse NY (SPX) Sep 28, 2018

file illustration only

Researchers at Syracuse University, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer.

Their findings are the subject of an article in Science magazine (American Association for the Advancement of Science, 2018), which elaborates on the experimental efforts involved with creating such a technique.

The Plourde Group- led by Britton Plourde, professor of physics in Syracuse's College of Arts and Sciences (A and S)- specializes in the fabrication of superconducting devices and their measurement at low temperatures.

Much of their work involves qubits, which are systems that follow the strange laws of quantum mechanics. These laws enable qubits to exist in superpositions of their two states (zero and one), in contrast to digital bits in conventional computers that exist in a single state.

Plourde says that superposition, when combined with entanglement ("another counterintuitive aspect of quantum mechanics"), leads to the possibility of quantum algorithms with myriad applications.

"These algorithms can tackle certain problems that are impossible to solve on today's most powerful supercomputers," he explains. "Potential areas impacted by quantum information processing include pharmaceutical development, materials science and cryptography."

Intensive, ongoing industrial-scale efforts by teams at Google and IBM have recently led to quantum processors with approximately 50 qubits. These qubits consist of superconducting microwave circuits cooled to temperatures near absolute zero.

Building a quantum computer powerful enough to tackle important problems, however, will require at least several hundreds of qubits- likely many more, Plourde says.

The current state-of-the-art approach to measuring qubits involves low-noise cryogenic amplifiers and substantial room-temperature microwave hardware and electronics, all of which are difficult to scale up to significantly larger qubit arrays. The approach outlined in Science takes a different tack.

"We focus on detecting microwave photons," says Plourde, also editor-in-chief of IEEE Transactions on Applied Superconductivity (Institute of Electrical and Electronics Engineers). "Our approach replaces the need for a cryogenic amplifier, and could be extended, in a straightforward way, toward eliminating much of the required room-temperature hardware, as well."

Plourde says the technique co-developed at Syracuse and UW-Madison could eventually allow for scaling to quantum processors with millions of qubits. This process is the subject of a previous article by Plourde and his collaborators in Quantum Science and Technology (IOP Publishing, 2018).

Research paper


Related Links
Syracuse University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Smaller, faster and more efficient modulator sets to revolutionize optoelectronic industry
Hong Kong (SPX) Sep 25, 2018
A research team comprising members from City University of Hong Kong (CityU), Harvard University and renowned information technologies laboratory has successfully fabricated a tiny on-chip lithium niobate modulator, an essential component for the optoelectronic industry. The modulator is smaller, more efficient with faster data transmission and costs less. The technology is set to revolutionise the industry. The electro-optic modulator produced in this breakthrough research is only 1 to 2 cm long ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Morocco navy fires on migrant boat, one dead: local officials

Rohingya crisis: UN has 'no right to interfere' says Myanmar army chief

Puerto Ricans turn to life-saving self-help in Maria's aftermath

Lebanon navy rescues dozens from sinking Cyprus-bound boat

CHIP TECH
New Study Tracks Hurricane Harvey Stormwater with GPS

China launches twin BeiDou-3 satellites

First satellite for GPS III upgrades to launch in December

AF Announces selection of GPS III follow-on contract

CHIP TECH
How millions of neurons become unique

Ancient bird bones redate human activity in Madagascar by 6,000 years

People are less likely to trust someone with a foreign accent

Blombos Cave drawing predates previous human-made drawings by at least 30,000 years

CHIP TECH
DNA sleuths bolster case against three ivory cartels

Mexico ranch helps American bison make a comeback

Delhi's last elephants; India probes death of 12 endangered lions

Tiger population nearly doubles in Nepal

CHIP TECH
With genetic tweak, mosquito population made extinct

Trump unveils revised US biodefense strategy

Indonesia's quake-hit Lombok battles with malaria, 137 infected

Deadly 'rat fever' in flood-ravaged Indian state

CHIP TECH
Disappearing act: What happened to Hong Kong's Umbrella Art?

Ibsen play pulled in China after audience demand free speech

China defends ban on Hong Kong pro-independence party

Pope calls on Chinese Catholics to reconcile after bishop deal

CHIP TECH
New president to inherit a Mexico plagued with grisly violence

Vessel tracking exposes the dark side of trading at sea

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.