Medical and Hospital News  
CHIP TECH
A step closer to single-atom data storage
by Staff Writers
Lausanne, Switzerland (SPX) Jul 13, 2018

illustration only

Despite the rise of solid-state drives, magnetic storage devices such as conventional hard drives and magnetic tapes are still very common. But as our data-storage needs are increasing at a rate of almost 15 million gigabytes per day, scientists are turning to alternative storage devices.

One of these are single-atom magnets: storage devices consisting of individual atoms stuck ("adsorbed") on a surface, each atom able to store a single bit of data that can be written and read using quantum mechanics. And because atoms are tiny enough to be packed together densely, single-atom storage devices promise enormous data capacities.

But although they are no longer science fiction, single-atom magnets are still in basic research, with many fundamental obstacles to be overcome before they can be implemented into commercial devices. EPFL has been at the forefront of the field, overcoming the issue of magnetic remanence, and showing that single-atom magnets can be used to read and write data.

In a new study published in Physical Review Letters, physicists at EPFL's Institute of Physics have used Scanning Tunneling Microscopy to demonstrate the stability of a magnet consisting of a single atom of holmium, an element they have been working with for years.

"Single-atom magnets offer an interesting perspective because quantum mechanics may offer shortcuts across their stability barriers that we could exploit in the future," says EPFL's Fabian Natterer who is the paper's first author. "This would be the last piece of the puzzle to atomic data recording."

The scientists exposed the atom to extreme conditions that normally de-magnetize single-atom magnets, such as temperature and high magnetic fields, all of which would pose risks to future storage devices.

Using a Scanning Tunneling Microscope, which can "see" atoms on surfaces, the scientists found that the holmium atoms could retain their magnetization in a magnetic field exceeding 8 Tesla, which is around the strength of magnets used in the Large Hadron Collider. The authors describe this as "record-breaking coercivity", a term that describes the ability of a magnet to withstand an external magnetic field without becoming demagnetized.

Next, they turned up the heat: The researchers exposed a series of Holmium single-atom magnets to temperatures of up to 45 Kelvin, (-233.15 degrees Celsius), which, for single atoms, is like being in a sauna. The Holmium single-atom magnets remained stable up to a temperature of 35K. Only at around 45K, the magnets began to spontaneously align themselves to the applied magnetic field. This showed that they can withstand relatively high temperature perturbations and might point to the way forward for running single-atom magnets at more commercially viable temperatures.

"Research in the miniaturization of magnetic bits has focused heavily on magnetic bistability," says Natterer. "We have demonstrated that the smallest bits can indeed be extremely stable, but next we need to learn how to write information to those bits more effectively to overcome the magnetic 'trilemma' of magnetic recording: stability, writability, and signal-to-noise ratio."

Research paper


Related Links
Ecole Polytechnique Federale de Lausanne
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Quantum dot white LEDs achieve record efficiency
Washington DC (SPX) Jul 13, 2018
Researchers have demonstrated nanomaterial-based white-light-emitting diodes (LEDs) that exhibit a record luminous efficiency of 105 lumens per watt. Luminous efficiency is a measure of how well a light source uses power to generate light. With further development, the new LEDs could reach efficiencies over 200 lumens per watt, making them a promising energy-efficient lighting source for homes, offices and televisions. "Efficient LEDs have strong potential for saving energy and protecting the envi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Japan firms used foreign trainees at Fukushima cleanup

'Jet engine' sound, tremors send Afghan villagers fleeing deadly landslide

In storm-hit Barbuda, China fills void left by Western 'neglect'

Thai boys were sedated and stretchered from cave in dramatic rescue

CHIP TECH
Europe's next Galileo satellites in place atop Ariane 5

CTSi flight tests prototype navigation system to replace GPS in highly contested environments for US Navy

Love navigated by Beidou

Next four Galileo satellites fuelled for launch

CHIP TECH
Eating bone marrow played a key role in the evolution of the human hand

Primates adjust grooming to their social environment

Our fractured African roots

Stone tools age Asia's first Homo presence

CHIP TECH
Spiders go ballooning on electric fields

Evolution does repeat itself after all

Cross-species gene transfer is a major driver of evolution, study claims

Eight rhinos die after move to a new park in Kenya

CHIP TECH
Help NASA Track and Predict Mosquito-Borne Disease Outbreaks

Spot a rat? Real-time map aims to plot Paris sightings

US fears of 'mystery weapon' revived by new China diplomat cases

Dialing up the body's defenses against public health threats

CHIP TECH
Hong Kong police seek landmark ban on pro-independence party

Hong Kong activists mark one year since Liu Xiaobo death

Chinese democracy activist sentenced to 13 years for 'subversion'

Beijing eyes UNESCO status for Mao tomb, Tiananmen Square

CHIP TECH
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.