Medical and Hospital News  
ENERGY TECH
Advancing next-generation Stable, safe, smart, sustainable batteries
by Staff Writers
Beijing, China (SPX) May 22, 2017


This image shows (a) Li-S, (b) room-temperature Na-S, (c) Li-organic, (d) organic-based redox-flow, and (e) Li-air batteries. Credit Science China Press

Next-generation rechargeable batteries are promising candidates for state-of-the-art lithium-ion batteries owing to their high energy density and preferred cost efficiency. For instance, Lithium-sulfur batteries, which are featured by their theoretically 10 times higher capacity and 5 times higher energy density, are reviving in both the academic and the industry. Shu Lei Chou and colleagues from the Institute for Superconducting and electronic materials, University of Wollongong, presented a review article and proposed a new concept of 4S (stable, safe, smart, sustainable) batteries.

They reviewed the latest development of functional membrane separators in liquid-electrolyte next-generation batteries and based on which they reported the four important criteria for guiding the advancement of novel battery systems. This work, entitled "Functional membrane separators for next-generation high-energy rechargeable batteries", was recently published in National Science Review.

Compared to conventional lithium-ion batteries capable of thousands of cycles, next-generation batteries are plagued by the poor cycling behavior, which is normally caused by the active material loss and the electrode degradation. Functional membrane separators provide an effective approach to extend the cycling stability of several important battery systems.

As can be seen from Figure 2, this work breaks the boundaries of five types of next-generation batteries, i.e., Li-S, room-temperature Na-, Li-organic, organic-based redox-flow and Li-air batteries. Ion-selective materials are applied as the separator to retard the unwanted shuttling of some specific species, e.g., polysulfide diffusion in Li-S batteries.

The applied functional membrane materials are Nafion (protonated, lithiated or sodiated), polymer of intrinsic microporosity (PIM), polyurethane (PU), metal organic frameworks (MOF), graphene oxide and lithium superionic conductor (LISICON). All these materials, whether polymers or inorganics, possess characteristic pore structures for the transport of the component ions but reject others, therefore prevent the side reactions and greatly enhance the cycling stability.

The safety performance of batteries closely relates to the life and property security of customers, hence is also a key criterion for battery development. Separators with important properties of high thermal/dimensional stability, good wetting performance and excellent thermal conductivity help improve the battery safety. With regard to the notorious lithium dendrite problem, separator approaches that create homogeneous environment for lithium deposition enhance the battery safety.

Besides, this article reviews the latest works of smart and sustainable separators. For instance, a voltage-responsive smart membrane system was constructed using a doped polypyrrole. When the applied electric field is zero, the membrane allows no ionic current.

Otherwise, when a certain reducing electric field is applied, the transport of positive ions is facilitated because the polymer is negatively charged and provides hopping pathways for cations, the pore size expanded and the polymer turns from hydrophobic to hydrophilic.

In addition, renewable polymers like cellulose are studied as promising candidates for fossil-based polyolefin materials to enable sustainable separators. The paper concludes that functional separators need further investigation and are expected to play a key role in advancing next-generation batteries towards the goal of 4S: stable, safe, smart, and sustainable.

Research paper: Functional membrane separators for next-generation high-energy rechargeable batteries

ENERGY TECH
Self-healing tech charges up performance for silicon-containing battery anodes
Champaign IL (SPX) May 26, 2017
Researchers at the University of Illinois have found a way to apply self-healing technology to lithium-ion batteries to make them more reliable and last longer. The group developed a battery that uses a silicon nanoparticle composite material on the negatively charged side of the battery and a novel way to hold the composite together - a known problem with batteries that contain silicon. ... read more

Related Links
Science China Press
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Countries most affected by weather disasters do not spend more on weather services

UN braces for up to 200,000 Iraqis to flee Mosul

Trump budget calls for deep cuts to social safety net

Disaster risk management: Science helps save lives

ENERGY TECH
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

ENERGY TECH
New hypothesis about the origin of humankind suggests oldest hominin lived in Europe

Portions of human skeletal structure were established millions of years earlier than previously thought,

Study reveals architecture of the 'second brain,' the enteric nervous system

'Moral enhancement' technologies are neither feasible nor wise

ENERGY TECH
How do blind cavefish find their way? The answer could be in their bones.

Genetic mutation trade-offs lead to parallel evolution

Why the fate of a tiny Rio Grande fish is so important

Young birds migrating to Africa dispersed by winds, study shows

ENERGY TECH
Stars dig deep at charity Cannes AIDS gala

'Freak': meet Cuba's last self-infected HIV punk rebel

Hundreds of Chinese students hospitalised for norovirus: Xinhua

Can crab shells provide a 'green' solution to malaria?

ENERGY TECH
China gasps at airy speech by grad student in US

Former top Chinese cop executed for murder

Hong Kong independence duo plead not guilty over parliament chaos

Jailed Chinese lawyer force-fed medication, wife says

ENERGY TECH
UN counter-drug official kidnapped in Colombia: officials

Indian, Chinese navies rescue ship hijacked by Somali pirates

ENERGY TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.